Development of computational models to understand the dynamic molecular recognition mechanisms of cannabinoid receptors

开发计算模型以了解大麻素受体的动态分子识别机制

基本信息

  • 批准号:
    RGPIN-2021-03161
  • 负责人:
  • 金额:
    $ 2.7万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Background: The use of cannabis has been legalized for both recreational and medical purposes in several countries worldwide including Canada. The latest data from Health Canada show that there were 329,038 active medical cannabis registrations during the first quarter of 2020. While the benefits of cannabis have been widely agreed, it is vital to enhance our understanding about the molecular mechanisms of how cannabinoids (CBs) - the active chemicals in cannabis- mediate their effects, which will help to develop safer and psychoactivity-free CBs. CBs are known to modulate the cannabinoid receptors (CBRs), CB1 and CB2, in humans. CB1 is expressed in the central nervous system, whereas the CB2 is mainly found in the immune system. The activation of these receptors by the binding of endogenous or exogenous CBs triggers a cascade of signaling pathways that is important for diverse physiological roles such as feeding, pain, emotional behaviour, immunity and lipid metabolism. Therefore, CB1 and CB2 have emerged as important class of enzymes. In the past decade, several synthetic and plant-based CBs have been developed. But, the modulation of CB1 in the leads to psychoactivity. On the contrary, since CB2 expression is concentrated in the immune system, and to a lesser extent in the brain, psychoactive side-effects can be evaded by regulating CB2. However, most of the known CBs non-specifically bind to both CB1 and CB2 and caused mild to severe psychoactivity. Therefore, it is crucial to identify molecular features that are unique to the two cannabinoid receptors to develop isoform-selective molecules. In addition, there remain numerous questions about the structural plasticity, ligand interactions, activation and signalling processes in cannabinoid receptors, which we seek to address in this research program. Objectives and methods: This research program aims at revealing molecular level details that are critical for isoform specificity in CBRs. Our objectives are to (O1) build comprehensive dynamical atomistic models of cannabinoid receptors, (O2) characterize the ligand-CB receptor interactions to elucidate the molecular processes behind ligand-mediated modulation of the cannabinoid receptors, and (O3) model specific protein-protein interactions that promote CBR signaling. We will use a combination of advanced computational modelling, molecular dynamics simulation approaches, machine learning methods and complementary experimental techniques to achieve our objectives. Impact: This research will contribute original knowledge in bioscience, chemical biology and train HQP by advancing our fundamental knowledge linked with mechanistic processes of molecular recognition in CBRs. Such insights could be useful to develop selective CBs without psychoactivity. The program will also be a suitable platform for training next generation of scientists in molecular modelling-driven endocannabinoid research.
背景:在包括加拿大在内的世界上一些国家,用于娱乐和医疗目的的大麻使用已合法化。加拿大卫生部的最新数据显示,2020年第一季度,有329,038名活跃的医用大麻注册。虽然大麻的好处已得到广泛认同,但加强我们对大麻素(大麻中的活性化学物质)如何调节其作用的分子机制的理解至关重要,这将有助于开发更安全、无精神活动的大麻素。众所周知,CBs可以调节人体中的大麻素受体(CB1和CB2)。CB1在中枢神经系统表达,而CB2主要存在于免疫系统。内源性或外源性CBs结合激活这些受体,触发一系列信号通路,这些信号通路对多种生理作用(如进食、疼痛、情绪行为、免疫和脂质代谢)非常重要。因此,CB1和CB2已成为一类重要的酶。在过去的十年中,已经开发了几种合成的和基于植物的CBs。但是,CB1的调节会导致精神活动。相反,由于CB2的表达主要集中在免疫系统中,在较小程度上集中在大脑中,因此可以通过调节CB2来避免精神活性副作用。然而,大多数已知的CBs非特异性结合CB1和CB2,并引起轻度至重度精神活动。因此,确定两种大麻素受体独特的分子特征以开发同种异构体选择性分子至关重要。此外,关于大麻素受体的结构可塑性,配体相互作用,激活和信号传导过程仍然存在许多问题,我们在本研究计划中寻求解决。目的和方法:本研究项目旨在揭示对cbr同种异构体特异性至关重要的分子水平细节。我们的目标是(O1)建立大麻素受体的综合动态原子模型,(O2)表征配体- cb受体相互作用,以阐明配体介导的大麻素受体调节背后的分子过程,以及(O3)模型促进CBR信号传导的特异性蛋白质-蛋白质相互作用。我们将结合先进的计算建模、分子动力学模拟方法、机器学习方法和互补的实验技术来实现我们的目标。影响:本研究将在生物科学、化学生物学和HQP方面贡献原创知识,通过推进我们与cbr分子识别机制过程相关的基础知识来培养HQP。这些见解可能有助于开发没有精神活动的选择性CBs。该项目还将成为培训下一代科学家从事分子模型驱动的内源性大麻素研究的合适平台。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ganesan, Aravindhan其他文献

Comprehensive in vitro characterization of PD-L1 small molecule inhibitors
  • DOI:
    10.1038/s41598-019-48826-6
  • 发表时间:
    2019-08-27
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Ganesan, Aravindhan;Ahmed, Marawan;Barakat, Khaled
  • 通讯作者:
    Barakat, Khaled
Electronic structure and intramolecular interactions in three methoxyphenol isomers
  • DOI:
    10.1063/1.5048691
  • 发表时间:
    2018-10-07
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    Islam, Shawkat;Ganesan, Aravindhan;Prince, Kevin C.
  • 通讯作者:
    Prince, Kevin C.
Revealing the atomistic details behind the binding of B7-1 to CD28 and CTLA-4: A comprehensive protein-protein modelling study
Density functional study of Cu2+-phenylalanine complex under micro-solvation environment
  • DOI:
    10.1016/j.jmgm.2013.08.015
  • 发表时间:
    2013-09-01
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Ganesan, Aravindhan;Dreyer, Jens;Larrucea, Julen
  • 通讯作者:
    Larrucea, Julen
Simple Design of an Enzyme-Inspired Supported Catalyst Based on a Catalytic Triad
  • DOI:
    10.1016/j.chempr.2017.04.004
  • 发表时间:
    2017-05-11
  • 期刊:
  • 影响因子:
    23.5
  • 作者:
    Nothling, Mitchell D.;Ganesan, Aravindhan;Connal, Luke A.
  • 通讯作者:
    Connal, Luke A.

Ganesan, Aravindhan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ganesan, Aravindhan', 18)}}的其他基金

Development of computational models to understand the dynamic molecular recognition mechanisms of cannabinoid receptors
开发计算模型以了解大麻素受体的动态分子识别机制
  • 批准号:
    DGECR-2021-00250
  • 财政年份:
    2021
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Launch Supplement
Development of computational models to understand the dynamic molecular recognition mechanisms of cannabinoid receptors
开发计算模型以了解大麻素受体的动态分子识别机制
  • 批准号:
    RGPIN-2021-03161
  • 财政年份:
    2021
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

湖北人工智能计算中心及大模型发展现状与对 策研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
上海城市信息模型(CIM)赋能新型智慧城市建设的发展现状及战略研究
  • 批准号:
    n/a
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
亲社会行为发展的情绪奖赏机制:基于强化学习计算模型
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
自动化计算系统FDC的进一步发展及其应用
  • 批准号:
    11975242
  • 批准年份:
    2019
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
钙离子模型的发展及其在生物体系计算中的应用
  • 批准号:
    21873006
  • 批准年份:
    2018
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目
中国经济发展中标准化的效益与贡献:可计算集成驱动模型的研究
  • 批准号:
    71871211
  • 批准年份:
    2018
  • 资助金额:
    48.0 万元
  • 项目类别:
    面上项目
基于医疗大数据的阿尔茨海默病症状发展预测模型
  • 批准号:
    61802360
  • 批准年份:
    2018
  • 资助金额:
    27.0 万元
  • 项目类别:
    青年科学基金项目
陆面模式中高计算效率叶绿素荧光模型的发展研究
  • 批准号:
    41705056
  • 批准年份:
    2017
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
面向复杂体系光谱计算的多尺度理论模型及计算方法的发展和应用
  • 批准号:
    21573177
  • 批准年份:
    2015
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目
基于特征投影分解的随机种群发展系统数值计算方法研究
  • 批准号:
    11461053
  • 批准年份:
    2014
  • 资助金额:
    38.0 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Molecular dissection of extrachromosomal DNA formation, development, and evolution
染色体外 DNA 形成、发育和进化的分子解剖
  • 批准号:
    10640520
  • 财政年份:
    2023
  • 资助金额:
    $ 2.7万
  • 项目类别:
Development of the multisensory computations underlying flavor processing
风味加工基础的多感官计算的发展
  • 批准号:
    10584065
  • 财政年份:
    2023
  • 资助金额:
    $ 2.7万
  • 项目类别:
Computational Development of Novel Dyslipidemia Therapeutic Candidates to Disrupt ApoC-III Conformation
破坏 ApoC-III 构象的新型血脂异常治疗候选物的计算开发
  • 批准号:
    10760187
  • 财政年份:
    2023
  • 资助金额:
    $ 2.7万
  • 项目类别:
Computational fluid dynamics analysis using sophisticated plant models towards the development of digital twins in greenhouse horticulture
使用复杂的植物模型进行计算流体动力学分析,以开发温室园艺中的数字孪生
  • 批准号:
    23K05477
  • 财政年份:
    2023
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Open-source Software Development Supplement for 3D quantitative analysisof mouse models of structural birth defects through computational anatomy
通过计算解剖学对结构性出生缺陷小鼠模型进行 3D 定量分析的开源软件开发补充
  • 批准号:
    10839199
  • 财政年份:
    2023
  • 资助金额:
    $ 2.7万
  • 项目类别:
Representing Human Anatomy for Computation and Communication: Synergistic Development of an Anatomical Ontology and Semantically-Augmented Anatomical Graphics
代表人体解剖学进行计算和通信:解剖本体论和语义增强解剖图形的协同发展
  • 批准号:
    10635511
  • 财政年份:
    2023
  • 资助金额:
    $ 2.7万
  • 项目类别:
Development & application of computational methods for the study of protein dynamics with PmHMGR as a model system
发展
  • 批准号:
    10607487
  • 财政年份:
    2023
  • 资助金额:
    $ 2.7万
  • 项目类别:
Development of phenolic small molecule inhibitors of PfATP6, a Plasmodium calcium ATPase
疟原虫钙 ATP 酶 PfATP6 酚类小分子抑制剂的开发
  • 批准号:
    10627419
  • 财政年份:
    2023
  • 资助金额:
    $ 2.7万
  • 项目类别:
Neurocomputational Mechanisms of Affective Semantic Memory Development
情感语义记忆发展的神经计算机制
  • 批准号:
    10755053
  • 财政年份:
    2023
  • 资助金额:
    $ 2.7万
  • 项目类别:
Development of High-Performance Finite-Difference Based Computational Models for Electromagnetic Field Assessment
开发基于有限差分的高性能电磁场评估计算模型
  • 批准号:
    568474-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Postdoctoral Fellowships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了