A Next-Generation Absolute Quantum Gyroscope using Ultra-Cold Atoms

使用超冷原子的下一代绝对量子陀螺仪

基本信息

  • 批准号:
    RGPIN-2021-02629
  • 负责人:
  • 金额:
    $ 2.4万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Positioning, guidance, and navigation heavily rely on state-of-the-art accelerometers and gyroscopes. The accuracy of autonomous inertial navigation systems is limited by the bias stability of optical gyroscopes. These devices measure rotation rates via the Sagnac interference between light beams traveling in opposite directions in a rotating loop, and are essential to several markets including the defense, aviation, and space industries. Atomic gyroscopes that utilize matter-wave interference offer a promising alternative. Due to their massive internal energy, an atom's sensitivity to rotations is 1011 times greater than that of a visible photon. Yet, the challenge of realizing a high-precision absolute quantum gyroscope has not yet been achieved. My research program will develop a next-generation absolute quantum gyroscope capable of measuring rotation rates below 10-10 rad/s. The short-term objectives of this program, which form the building blocks of a novel quantum technology, are as follows: 1. Multidimensional atom optics: new techniques to simultaneously diffract atoms along multiple spatial dimensions will be implemented-enabling the construction of 2D and 3D matter-wave interferometers with multi-axis inertial sensitivity. 2. Multi-loop interferometry: multi-loop interferometer geometries with large enclosed areas will be used to enhance the performance. 3. Absolute scale factor: a rotation signal with a scale factor accuracy of 1 part in 109 will be demonstrated. 4. Compact sensor head: utilizing large-momentum transfer optical pulses, along with an "optical trampoline" in which atoms coherently bounce in a small region, my group will enhance the sensitivity of the atomic gyroscope in a compact volume-laying the groundwork for future commercialization. 5. Suppression of systematic effects: sources of bias related to the atoms initial velocity and acceleration will be suppressed by several orders of magnitude. Achieving these objectives will require the construction of a state-of-the-art instrument capable of producing ultra-cold atoms that are coherently manipulated in a large-area matter-wave interferometer. This work will kick-start a new laboratory for quantum sensing and ultra-cold matter physics at the University of New Brunswick-creating unique opportunities for research and training of highly-qualified personnel. The radical long-term objective of this research program is to develop high-performance miniature quantum sensors that can be integrated with commercial navigation systems-leading to long-term satellite-free positioning. This program directly contributes to NSERC's strategic objective to foster early-stage research with a high potential for commercialization, and to establish a leading role for Canada in the development of quantum technology. Its success will strongly impact the multi-billion-dollar industry of positioning and navigation, as well as applications in geophysics, rotational seismology, and space science.
定位、制导和导航严重依赖最先进的加速度计和陀螺仪。光学陀螺的零偏稳定性限制了自主式惯性导航系统的精度。这些设备通过在旋转环路中沿相反方向行进的光束之间的Sagnac干涉来测量旋转速率,并且对于包括国防、航空和航天工业在内的多个市场至关重要。利用物质波干涉的原子陀螺仪提供了一个很有前途的选择。由于它们巨大的内能,原子对旋转的敏感性是可见光子的1011倍。然而,实现高精度绝对量子陀螺仪的挑战尚未实现。我的研究计划将开发下一代绝对量子陀螺仪,能够测量低于10-10 rad/s的旋转速率。该计划的短期目标,构成了一种新的量子技术的基石,如下所示:1。多维原子光学:将实现沿沿着多个空间维度同时激发原子的新技术,从而能够构造具有多轴惯性灵敏度的2D和3D物质波干涉仪。2.多回路干涉测量:将使用具有大封闭区域的多回路干涉仪几何结构来提高性能。3.绝对比例因子:将演示比例因子精度为1/109的旋转信号。4.紧凑型传感器头:利用大动量转移光脉冲,沿着原子在小范围内相干反弹的“光学蹦床”,我的团队将在紧凑的体积内提高原子陀螺仪的灵敏度,为未来的商业化奠定基础。5.抑制系统效应:与原子初速度和加速度相关的偏置源将被抑制几个数量级。实现这些目标将需要建设一个国家的最先进的仪器,能够产生超冷原子,在大面积物质波干涉仪相干操纵。这项工作将在新不伦瑞克大学启动一个新的量子传感和超冷物质物理实验室,为高素质人才的研究和培训创造独特的机会。这项研究计划的根本长期目标是开发高性能的微型量子传感器,可以与商业导航系统集成,从而实现长期的无卫星定位。该计划直接有助于NSERC的战略目标,即促进具有高度商业化潜力的早期研究,并为加拿大在量子技术发展中发挥主导作用。它的成功将对价值数十亿美元的定位和导航产业以及在地球物理学、旋转地震学和空间科学中的应用产生重大影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Barrett, Brynle其他文献

Navigation-Compatible Hybrid Quantum Accelerometer Using a Kalman Filter
  • DOI:
    10.1103/physrevapplied.10.034030
  • 发表时间:
    2018-09-17
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Cheiney, Pierrick;Fouche, Lauriane;Barrett, Brynle
  • 通讯作者:
    Barrett, Brynle
The Sagnac effect: 20 years of development in matter-wave interferometry
  • DOI:
    10.1016/j.crhy.2014.10.009
  • 发表时间:
    2014-12-01
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    Barrett, Brynle;Geiger, Remy;Landragin, Arnaud
  • 通讯作者:
    Landragin, Arnaud

Barrett, Brynle的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Barrett, Brynle', 18)}}的其他基金

A Next-Generation Absolute Quantum Gyroscope using Ultra-Cold Atoms
使用超冷原子的下一代绝对量子陀螺仪
  • 批准号:
    RGPIN-2021-02629
  • 财政年份:
    2021
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
A Next-Generation Absolute Quantum Gyroscope using Ultra-Cold Atoms
使用超冷原子的下一代绝对量子陀螺仪
  • 批准号:
    DGECR-2021-00070
  • 财政年份:
    2021
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Launch Supplement
Precision measurement of the atomic fine structure constgant alpha using an atomic fountain#
使用原子喷泉精确测量原子精细结构常数α
  • 批准号:
    334041-2006
  • 财政年份:
    2008
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Precision measurement of the atomic fine structure constgant alpha using an atomic fountain#
使用原子喷泉精确测量原子精细结构常数α
  • 批准号:
    334041-2006
  • 财政年份:
    2007
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Precision measurement of the atomic fine structure constgant alpha using an atomic fountain#
使用原子喷泉精确测量原子精细结构常数α
  • 批准号:
    334041-2006
  • 财政年份:
    2006
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Spinor Condensates in Optical Lattices
光学晶格中的旋量凝聚
  • 批准号:
    317123-2005
  • 财政年份:
    2005
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's

相似国自然基金

Next Generation Majorana Nanowire Hybrids
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    20 万元
  • 项目类别:

相似海外基金

Next Generation Glioma Treatments using Direct Light Therapy
使用直接光疗法的下一代神经胶质瘤治疗
  • 批准号:
    10092859
  • 财政年份:
    2024
  • 资助金额:
    $ 2.4万
  • 项目类别:
    EU-Funded
Next-generation KYC banking verification via embedded smart keyboard
通过嵌入式智能键盘进行下一代 KYC 银行验证
  • 批准号:
    10100109
  • 财政年份:
    2024
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Collaborative R&D
Multi-component interventions to reducing unhealthy diets and physical inactivity among adolescents and youth in sub-Saharan Africa (Generation H)
采取多方干预措施减少撒哈拉以南非洲青少年的不健康饮食和缺乏身体活动(H 代)
  • 批准号:
    10106976
  • 财政年份:
    2024
  • 资助金额:
    $ 2.4万
  • 项目类别:
    EU-Funded
Safe and Sustainable by Design framework for the next generation of Chemicals and Materials
下一代化学品和材料的安全和可持续设计框架
  • 批准号:
    10110559
  • 财政年份:
    2024
  • 资助金额:
    $ 2.4万
  • 项目类别:
    EU-Funded
Next-Generation Distributed Graph Engine for Big Graphs
适用于大图的下一代分布式图引擎
  • 批准号:
    DP240101322
  • 财政年份:
    2024
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Projects
Next Generation Fluorescent Tools for Measuring Autophagy Dynamics in Cells
用于测量细胞自噬动态的下一代荧光工具
  • 批准号:
    DP240100465
  • 财政年份:
    2024
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Projects
PhD in the Next Generation of Organic LEDs
下一代有机 LED 博士
  • 批准号:
    2904651
  • 财政年份:
    2024
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Studentship
van der Waals Heterostructures for Next-generation Hot Carrier Photovoltaics
用于下一代热载流子光伏的范德华异质结构
  • 批准号:
    EP/Y028287/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Fellowship
MagTEM2 - the next generation microscope for imaging functional materials
MagTEM2 - 用于功能材料成像的下一代显微镜
  • 批准号:
    EP/Z531078/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Research Grant
FLF Next generation atomistic modelling for medicinal chemistry and biology
FLF 下一代药物化学和生物学原子建模
  • 批准号:
    MR/Y019601/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了