Phase Space Quantum Mechanics and the Quantum-Classical Relation
相空间量子力学和量子经典关系
基本信息
- 批准号:RGPIN-2022-04225
- 负责人:
- 金额:$ 1.75万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Phase-Space Quantum Mechanics and the Quantum-Classical Relation Quantum mechanics (QM) describes physics at short, "microscopic'' distances. Classical mechanics (CM) applies at macroscopic scales. Each works eminently well in its regime. The quantum-classical (QC) relation, however, is not well understood. For example, if one imagines moving from the microscopic to the macroscopic, QM does not morph into CM. Even worse, the so-called classical limit becomes singular, and it is difficult to understand how classical can emerge from quantum. I propose a research program aimed at understanding the QC relation better. Improved understanding would represent an advance in the foundations of physics. It would also be important for many experiments now being done and the technology being developed in the QC regime. My work uses phase space quantum mechanics (PSQM). It is the formulation of QM best suited to studying the QC relation. Both PSQM and CM live in phase space, for example, and neither uses operators. Hybrid QC systems point to problems. Many different systems exist in nature that appear to be composed of a quantum part interacting with a classical part. Example: quantum electrons and classical nuclei in a molecule. However, attempts to formulate consistent dynamics for hybrid QC systems have failed. Recently, I attacked this problem in the framework of PSQM. My student Amin and I rederived and generalized key previous results. Furthermore, we introduced a composition product for hybrid observables that made a consistent dynamics possible. In a 2nd paper, we applied the results to a simple model, providing a blueprint for applications to other physical systems. The first and largest part of my research proposal capitalizes on this advance. Our methods will be applied to more and more complex systems, approaching physicality, and eventually, making predictions about experiments. Additional effects have been conjectured to play a role in the emergence of CM from QM. These include measurement uncertainties, thermal effects, decoherence by interaction with the environment, and spontaneous state collapse. All will be studied in PSQM, for eventual use of our results in distinguishing them experimentally. If QM is valid at all scales, then macroscopic quantum systems, "Schrodinger cats'', must exist. An intense hunt is now underway for them. Included is a search for measures of macroscopic quantumness. Many measures of quantumness have been constructed in PSQM. I propose to investigate their dependence on various notions of size, in order to identify candidate measures of macroscopic quantumness. A second aim of my proposed research is to improve and generalize the methods and tools of PSQM. For example, recent work generalizes the Wigner function to quasiprobability distributions for arbitrary sets of operators. I plan to investigate if other elements of PSQM, like a star product, can also be introduced.
相空间量子力学和量子-经典关系量子力学(QM)描述了短距离的物理学,“微观”距离。经典力学(CM)适用于宏观尺度。每一个都在其制度中运作得非常好。然而,量子-经典(QC)关系还没有得到很好的理解。例如,如果一个人想象从微观移动到宏观,QM不会变成CM。更糟糕的是,所谓的经典极限变得奇异,很难理解经典是如何从量子中产生的。 我提出了一个研究计划,旨在更好地了解QC关系。理解的提高将代表物理学基础的进步。这对目前正在进行的许多实验和正在质量控制制度下开发的技术也很重要。 我的工作使用相空间量子力学(PSQM)。这是最适合研究QC关系的QM公式。例如,PSQM和CM都存在于相空间中,并且都不使用算子。 混合QC系统指出了问题。自然界中存在许多不同的系统,它们似乎是由量子部分与经典部分相互作用组成的。例如:分子中的量子电子和经典原子核。然而,试图制定一致的动态混合QC系统失败了。最近,我在PSQM的框架中攻击了这个问题。我和我的学生Amin重新推导并推广了以前的关键结果。此外,我们还引入了一种混合观测量的合成乘积,使一致的动力学成为可能。在第二篇论文中,我们将结果应用于一个简单的模型,为其他物理系统的应用提供了蓝图。我的研究计划的第一个也是最大的一个部分就是利用了这一进步。我们的方法将应用于越来越复杂的系统,接近物理性,并最终对实验进行预测。额外的影响已被证实在CM从QM出现中发挥作用。这些因素包括测量不确定性、热效应、与环境相互作用引起的退相干以及自发态崩塌。所有这些都将在PSQM中进行研究,以便最终使用我们的结果在实验上区分它们。 如果量子力学在所有尺度下都成立,那么宏观量子系统,即“薛定谔猫”,必然存在。一场激烈的追捕正在进行中。其中包括对宏观量子性的测量。在PSQM中已经构造了许多量子性的度量。我建议调查他们的依赖于各种概念的大小,以确定候选措施的宏观量子。 我提出的研究的第二个目的是改进和推广PSQM的方法和工具。例如,最近的工作将维格纳函数推广到任意算子集的准概率分布。我计划调查是否也可以引入PSQM的其他元素,比如星星产品。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Walton, Mark其他文献
Long-term in vivo degradation of poly-L-lactide (PLLA) in bone
- DOI:
10.1177/0885328206065125 - 发表时间:
2007-04-01 - 期刊:
- 影响因子:2.9
- 作者:
Walton, Mark;Cotton, Nicholas J. - 通讯作者:
Cotton, Nicholas J.
Estimating Benefits of Improving Water Quality in the Largest Remaining Tidal Flat in South Korea
- DOI:
10.1007/s13157-012-0282-z - 发表时间:
2012-06-01 - 期刊:
- 影响因子:2
- 作者:
Endo, Isao;Walton, Mark;Park, Gyung-Soo - 通讯作者:
Park, Gyung-Soo
Microplastics alter multiple biological processes of marine benthic fauna
- DOI:
10.1016/j.scitotenv.2022.157362 - 发表时间:
2022-07-20 - 期刊:
- 影响因子:9.8
- 作者:
Mason, Victoria G.;Skov, Martin W.;Walton, Mark - 通讯作者:
Walton, Mark
Vanadium(III) phenoxyimine complexes for ethylene or ε-caprolactone polymerization: mononuclear versus binuclear pre-catalysts
- DOI:
10.1039/c2cy20571h - 发表时间:
2013-01-01 - 期刊:
- 影响因子:5
- 作者:
Clowes, Lucy;Walton, Mark;Hughes, David L. - 通讯作者:
Hughes, David L.
Walton, Mark的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Walton, Mark', 18)}}的其他基金
From Conformal Field Theory to Quantum Mechanics and Quantum Information
从共形场论到量子力学和量子信息
- 批准号:
RGPIN-2015-05809 - 财政年份:2019
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
From Conformal Field Theory to Quantum Mechanics and Quantum Information
从共形场论到量子力学和量子信息
- 批准号:
RGPIN-2015-05809 - 财政年份:2018
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
From Conformal Field Theory to Quantum Mechanics and Quantum Information
从共形场论到量子力学和量子信息
- 批准号:
RGPIN-2015-05809 - 财政年份:2017
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
From Conformal Field Theory to Quantum Mechanics and Quantum Information
从共形场论到量子力学和量子信息
- 批准号:
RGPIN-2015-05809 - 财政年份:2016
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
From Conformal Field Theory to Quantum Mechanics and Quantum Information
从共形场论到量子力学和量子信息
- 批准号:
RGPIN-2015-05809 - 财政年份:2015
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Conformal field theory, star quantization and matrix models, for physical applications
共形场论、星量化和矩阵模型,用于物理应用
- 批准号:
122213-2006 - 财政年份:2013
- 资助金额:
$ 1.75万 - 项目类别:
Subatomic Physics Envelope - Individual
Conformal field theory, star quantization and matrix models, for physical applications
共形场论、星量化和矩阵模型,用于物理应用
- 批准号:
122213-2006 - 财政年份:2012
- 资助金额:
$ 1.75万 - 项目类别:
Subatomic Physics Envelope - Individual
Conformal field theory, star quantization and matrix models, for physical applications
共形场论、星量化和矩阵模型,用于物理应用
- 批准号:
122213-2006 - 财政年份:2011
- 资助金额:
$ 1.75万 - 项目类别:
Subatomic Physics Envelope - Individual
Conformal field theory, star quantization and matrix models, for physical applications
共形场论、星量化和矩阵模型,用于物理应用
- 批准号:
122213-2006 - 财政年份:2010
- 资助金额:
$ 1.75万 - 项目类别:
Subatomic Physics Envelope - Individual
Conformal field theory, star quantization and matrix models, for physical applications
共形场论、星量化和矩阵模型,用于物理应用
- 批准号:
122213-2006 - 财政年份:2009
- 资助金额:
$ 1.75万 - 项目类别:
Subatomic Physics Envelope - Individual
相似国自然基金
基于非对称k-space算子分解的时空域声波和弹性波隐式有限差分新方法研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
联合QISS和SPACE一站式全身NCE-MRA对原发性系统性血管炎的诊断价值的研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:0.0 万元
- 项目类别:省市级项目
三维流形的L-space猜想和左可序性
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高维space-filling问题及其相关问题
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
难治性焦虑障碍儿童青少年父母基于SPACE 应对技能训练团体干预疗效
- 批准号:20Y11906700
- 批准年份:2020
- 资助金额:0.0 万元
- 项目类别:省市级项目
Rigged Hilbert Space与Bethe-Salpeter方程框架下强子共振态的理论研究
- 批准号:11975075
- 批准年份:2019
- 资助金额:60.0 万元
- 项目类别:面上项目
Space-surface Multi-GNSS机会信号感知植生参数建模与融合方法研究
- 批准号:41974039
- 批准年份:2019
- 资助金额:63.0 万元
- 项目类别:面上项目
基于无线光载射频(Radio over Free Space Optics)技术的分布式天线系统关键技术研究
- 批准号:60902038
- 批准年份:2009
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
SPACE-RIP并行磁共振成像算法及其临床应用的研究
- 批准号:30670578
- 批准年份:2006
- 资助金额:28.0 万元
- 项目类别:面上项目
相似海外基金
Phase-space and two-state-vector formulations of quantum mechanics
量子力学的相空间和二态向量公式
- 批准号:
510366-2017 - 财政年份:2017
- 资助金额:
$ 1.75万 - 项目类别:
University Undergraduate Student Research Awards
Quantum effects of classical phase space singularities in lattice gauge models
晶格规范模型中经典相空间奇点的量子效应
- 批准号:
389090207 - 财政年份:2017
- 资助金额:
$ 1.75万 - 项目类别:
Research Grants
Photoinduced phase transition described by Hilbert space anomaly and quantum friction
希尔伯特空间异常和量子摩擦描述的光致相变
- 批准号:
17K05509 - 财政年份:2017
- 资助金额:
$ 1.75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Applications of Lie algebraic and phase space methods in quantum physics
李代数和相空间方法在量子物理中的应用
- 批准号:
249769-2012 - 财政年份:2016
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Hybrid quantum-classical simulation of SiC oxidation process by a wide-range search of phase space
通过相空间的广泛搜索对 SiC 氧化过程进行混合量子经典模拟
- 批准号:
16H03830 - 财政年份:2016
- 资助金额:
$ 1.75万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Phase-space methods for engineering discrete quantum and classical systems.
用于工程离散量子和经典系统的相空间方法。
- 批准号:
1844413 - 财政年份:2016
- 资助金额:
$ 1.75万 - 项目类别:
Studentship
Applications of Lie algebraic and phase space methods in quantum physics
李代数和相空间方法在量子物理中的应用
- 批准号:
249769-2012 - 财政年份:2015
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Applications of Lie algebraic and phase space methods in quantum physics
李代数和相空间方法在量子物理中的应用
- 批准号:
249769-2012 - 财政年份:2014
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Applications of Lie algebraic and phase space methods in quantum physics
李代数和相空间方法在量子物理中的应用
- 批准号:
249769-2012 - 财政年份:2013
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Phase space description of open quantum systems
开放量子系统的相空间描述
- 批准号:
449412-2013 - 财政年份:2013
- 资助金额:
$ 1.75万 - 项目类别:
University Undergraduate Student Research Awards