Biophysical and neural coding mechanisms of the ear

耳朵的生物物理和神经编码机制

基本信息

  • 批准号:
    RGPIN-2022-04783
  • 负责人:
  • 金额:
    $ 3.5万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Hearing is one of our most basic senses and plays a critical role in the daily lives of most animals. For example, consider the ubiquity of vocal communication and listening to music. Hearing impairment (e.g., difficulty detecting sounds and/or following conversations in noisy environments) is a major factor affecting the quality of life for a significant fraction of people in Canada and all around the world. The situation has been further exacerbated by the COVID-19 pandemic, where mask coverings make communication more difficult for those with hearing loss. Healthy ears exhibit remarkable functionality, being both highly sensitive (i.e., detect) and selective to (i.e., decompose) sounds. To achieve this, the ear is an active detector: Metabolic energy is used to selectively amplify sound-induced motions. As a consequence, healthy ears generate sounds that are measurable in the ear canal with a sensitive microphone. These signals are known as otoacoustic emissions (OAEs) and provide valuable clinical diagnostics (e.g., newborn hearing screening) and scientific insight into the active ear. However, much remains unknown about OAE generation mechanisms due to the morphological complexity and fragility of the mammalian cochlea. As such, our knowledge about the human cochlea is primarily inferred from invasive work done with animals. My research program studies auditory biophysics and neuroscience by taking a comparative approach, using the morphological diversity of the ear across the animal kingdom to our advantage. In particular, we focus on the Anolis lizard. Despite the absence of structures and features commonly thought essential for mammalian hearing, lizards demonstrate comparable sensitivity and selectivity. Thereby, their relatively simpler ears can provide an essential path forward for shedding light upon the active mammalian ear and how the breakdown of key processes lead to hearing impairment. This proposal combines mathematical modeling and several non-invasive state-of-the-art measurement methods: otoacoustics, auditory evoked potentials, and laser Doppler vibrometry. By testing several hypotheses relating these measures to their ability to determine sensitivity and selectivity, we will gain much deeper insight into the biomechanics and neural coding of our active ears. Together, the proposed objectives form a tapestry that will allow us to better understand the auditory periphery through the lens of cellular cooperativity, where the many parts of the ear work together to form something wholly different from the sum. Such synergies will allow us to expand our knowledge about principles underlying this remarkable sensory system and set a solid foundation for future translational research. Further, my training program will promote diversity and foster inclusion, thereby establishing confidence in the voices of tomorrow's scientists and helping Canada become an international leader in auditory science.
听觉是人类最基本的感官之一,在大多数动物的日常生活中起着至关重要的作用。例如,考虑一下无处不在的声音交流和听音乐。听力障碍(例如,在嘈杂的环境中难以辨别声音和/或跟上对话)是影响加拿大和世界各地相当一部分人生活质量的主要因素。新冠肺炎疫情进一步加剧了这种情况,口罩使听力损失者的交流变得更加困难。健康的耳朵表现出非凡的功能,对声音高度敏感(即检测)和选择性(即分解)。为了实现这一点,耳朵是一个活跃的探测器:新陈代谢能量被用来选择性地放大声音诱导的运动。因此,健康的耳朵发出的声音可以通过灵敏的麦克风在耳道中测量到。这些信号被称为耳声发射(OAEs),提供有价值的临床诊断(例如,新生儿听力筛查)和对活跃耳朵的科学洞察。然而,由于哺乳动物耳蜗的形态复杂性和脆弱性,对于OAE的产生机制仍有许多未知之处。因此,我们对人类耳蜗的了解主要是从动物身上进行的侵入性工作中推断出来的。我的研究项目采用比较的方法学习听觉生物物理学和神经科学,利用整个动物界耳朵的形态多样性对我们有利。我们特别关注Anolis蜥蜴。尽管蜥蜴缺乏通常被认为是哺乳动物听力所必需的结构和特征,但蜥蜴表现出了类似的敏感性和选择性。因此,它们相对简单的耳朵可以为揭示活跃的哺乳动物耳朵以及关键过程的崩溃如何导致听力障碍提供一条重要的前进道路。这一建议结合了数学建模和几种非侵入性的最先进的测量方法:耳声学、听觉诱发电位和激光多普勒测振法。通过测试将这些测量与它们确定灵敏度和选择性的能力相关的几个假设,我们将对我们活跃的耳朵的生物力学和神经编码有更深入的了解。总之,提出的目标形成了一幅挂毯,使我们能够通过细胞协作性的透镜更好地理解听觉外围,其中耳朵的许多部分一起工作,形成与总和完全不同的东西。这种协同效应将使我们能够扩大我们对这一非凡感觉系统背后的原理的了解,并为未来的翻译研究奠定坚实的基础。此外,我的培训计划将促进多样性和包容性,从而建立对未来科学家声音的信心,并帮助加拿大成为听觉科学的国际领导者。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bergevin, Christopher其他文献

Overtone focusing in biphonic tuvan throat singing
  • DOI:
    10.7554/elife.50476
  • 发表时间:
    2020-02-17
  • 期刊:
  • 影响因子:
    7.7
  • 作者:
    Bergevin, Christopher;Narayan, Chandan;Story, Brad
  • 通讯作者:
    Story, Brad
Towards Improving the Integration of Undergraduate Biology and Mathematics Education
External and middle ear sound pressure distribution and acoustic coupling to the tympanic membrane
Coherent reflection without traveling waves: On the origin of long-latency otoacoustic emissions in lizards
Interrelationships between spontaneous and low-level stimulus-frequency otoacoustic emissions in humans
  • DOI:
    10.1016/j.heares.2012.02.001
  • 发表时间:
    2012-03-01
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Bergevin, Christopher;Fulcher, Analydia;Lee, Jungmee
  • 通讯作者:
    Lee, Jungmee

Bergevin, Christopher的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bergevin, Christopher', 18)}}的其他基金

Biophysical Mechanisms Underlying Auditory Transduction
听觉传导的生物物理机制
  • 批准号:
    430761-2013
  • 财政年份:
    2018
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Discovery Grants Program - Individual
Biophysical Mechanisms Underlying Auditory Transduction
听觉传导的生物物理机制
  • 批准号:
    430761-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Discovery Grants Program - Individual
Biophysical Mechanisms Underlying Auditory Transduction
听觉传导的生物物理机制
  • 批准号:
    430761-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Discovery Grants Program - Individual
Biophysical Mechanisms Underlying Auditory Transduction
听觉传导的生物物理机制
  • 批准号:
    430761-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Discovery Grants Program - Individual
Biophysical Mechanisms Underlying Auditory Transduction
听觉传导的生物物理机制
  • 批准号:
    430761-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

亚低温调控颅脑创伤急性期神经干细胞Mpc2/Lactate/H3K9lac通路促进神经修复的研究
  • 批准号:
    82371379
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
脐带间充质干细胞微囊联合低能量冲击波治疗神经损伤性ED的机制研究
  • 批准号:
    82371631
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
基于再生运动神经路径优化Agrin作用促进损伤神经靶向投射的功能研究
  • 批准号:
    82371373
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
Neural Process模型的多样化高保真技术研究
  • 批准号:
    62306326
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
声致离子电流促进小胶质细胞M2极化阻断再生神经瘢痕退变免疫机制
  • 批准号:
    82371973
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
生理/病理应激差异化调控肝再生的“蓝斑—中缝”神经环路机制
  • 批准号:
    82371517
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
LIPUS响应的弹性石墨烯多孔导管促进神经再生及其机制研究
  • 批准号:
    82370933
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
弓状核介导慢性疼痛引起动机下降的神经环路机制及rTMS干预研究
  • 批准号:
    82371536
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
听觉刺激特异性调控情绪的神经环路机制研究
  • 批准号:
    82371516
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
TAG1/APP信号通路调控的miRNA及其在神经前体细胞增殖和分化中的作用机制
  • 批准号:
    31171313
  • 批准年份:
    2011
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

Neural circuitry of predictions and prediction errors in the auditory system
听觉系统中预测和预测误差的神经回路
  • 批准号:
    23K14298
  • 财政年份:
    2023
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Understanding the role of ribosome-associated long non-coding RNA in cancers of the neural crest
了解核糖体相关长非编码 RNA 在神经嵴癌中的作用
  • 批准号:
    2879751
  • 财政年份:
    2023
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Studentship
Dynamic neural coding of spectro-temporal sound features during free movement
自由运动时谱时声音特征的动态神经编码
  • 批准号:
    10656110
  • 财政年份:
    2023
  • 资助金额:
    $ 3.5万
  • 项目类别:
Elucidation of fear extinction mechanisms through in-vivo deep-brain optical imaging and manipulation focused on the activity dynamics in the prelimbic cortex
通过体内深部脑光学成像和操作阐明恐惧消退机制,重点关注前边缘皮层的活动动态
  • 批准号:
    22KJ0812
  • 财政年份:
    2023
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
CONVERGENT PROCESSING ACROSS VISUAL AND HAPTIC CIRCUITS FOR 3D SHAPE PERCEPTION
跨视觉和触觉电路的融合处理,实现 3D 形状感知
  • 批准号:
    10720137
  • 财政年份:
    2023
  • 资助金额:
    $ 3.5万
  • 项目类别:
The role of the lateral entorhinal cortex in the reinstatement of memory representations.
外侧内嗅皮层在恢复记忆表征中的作用。
  • 批准号:
    488168
  • 财政年份:
    2023
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Operating Grants
Organization of neural coding and plasticity in L2/3 of mouse S1 cortex
小鼠 S1 皮质 L2/3 的神经编码组织和可塑性
  • 批准号:
    10653516
  • 财政年份:
    2023
  • 资助金额:
    $ 3.5万
  • 项目类别:
A study of the mechanism of sensory hyper-responsiveness from the perspective of predictive coding and neural inhibitory dysfunction in autism spectrum disorder
从预测编码和神经抑制功能障碍角度研究自闭症谱系障碍感觉高反应机制
  • 批准号:
    23K03017
  • 财政年份:
    2023
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Odor Coding in the Dorsal Tenia Tecta
背侧腱索的气味编码
  • 批准号:
    10735102
  • 财政年份:
    2023
  • 资助金额:
    $ 3.5万
  • 项目类别:
The assembly of population coding networks
群体编码网络的组装
  • 批准号:
    10668566
  • 财政年份:
    2023
  • 资助金额:
    $ 3.5万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了