Resolving Kinetic Limitations of Battery Materials from First Principles

从第一原理解决电池材料的动力学限制

基本信息

  • 批准号:
    RGPIN-2022-02969
  • 负责人:
  • 金额:
    $ 1.82万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

The expansion of electric vehicle (EV) market calls for low-cost and fast-charging Li-ion batteries. Materials innovation is the key to meet the ever-growing energy storage need. There are two challenges in developing better battery materials: Li ions are too small to be seen, and they are constantly moving under operation. Atomistic simulations from first principles empower us "seeing" the kinetic processes inside materials with high fidelity. The goal of my research is to provide pictures of such atomistic level kinetics, which are not easy to obtain experimentally. Ultimately, we aim to use our computational insights to accelerate the design and manufacturing of novel battery materials. We will simulate the motion of Li ions coupled with the rearrangement of building blocks in the host material. This will allow us cover materials synthesis, degradation, and characterization. Synthesis conditions determine the host structure, particularly the defect types and concentrations. Degradation is related to irreversible structure changes that often initiate around defects. Simulated characterizations connect our atomistic pictures to macroscopic measurements. In the short term, we will focus on the Ni-rich layered and the LiFePO4-based olivine cathodes. They are both promising candidates to eliminate the use of expensive and toxic Co, but their potentials have not yet been fully realized. Both materials suffer from slow Li diffusion rate at certain stage, which limits their usable capacities and charging rates. Using first-principles calculations, we will investigate the structural origin of such kinetic hindrance and the deterioration over cycling. With a fundamental understanding obtained, we can then examine the effects of doping elements and synthesis conditions on a computer. Throughout the research process we will compare the simulated electrochemical curves with existing experiments to either confirm our finding or improve our model. The engineering goal is to optimize the compositions as well as the producing conditions to accelerate Li diffusion while inhibiting degradation. The immediate impact of our research is to bring in-depth knowledge of kinetic processes in battery materials, which will help identify rate-limiting steps and resolve discrepancies in diffusivity measurements. Eventually, these insights could lead to new batteries that are cheap, charge faster and last longer, which reduce our environmental footprints. On the broader impact, the computational framework developed in this program will be beneficial to related fields, such as alloy corrosion and electrochemical CO2 capture, by enabling long-timescale and high-accuracy kinetic simulations. Most importantly, this program will prepare the next-generation researchers with state-of-art methods and critical thinking skills.
随着电动汽车市场的不断扩大,对低成本、快速充电的锂离子电池提出了更高的要求。材料创新是满足不断增长的储能需求的关键。开发更好的电池材料面临两个挑战:锂离子太小,看不见,而且它们在运行中不断移动。基于第一原理的原子模拟使我们能够高保真地“看到”材料内部的动力学过程。我的研究目标是提供这样的原子级动力学的图片,这是不容易获得实验。最终,我们的目标是利用我们的计算见解来加速新型电池材料的设计和制造。我们将模拟锂离子的运动与主体材料中结构单元的重排。这将使我们能够涵盖材料合成,降解和表征。合成条件决定了主体结构,特别是缺陷类型和浓度。退化与通常在缺陷周围引发的不可逆结构变化有关。模拟表征将我们的原子图像与宏观测量联系起来。在短期内,我们将专注于富镍层状和LiFePO4基橄榄石阴极。它们都是消除使用昂贵和有毒的Co的有希望的候选者,但它们的潜力尚未完全实现。这两种材料在某些阶段都存在Li扩散速率慢的问题,这限制了它们的可用容量和充电速率。使用第一性原理计算,我们将调查这种动力学障碍和循环恶化的结构起源。有了基本的了解,我们可以在计算机上检查掺杂元素和合成条件的影响。在整个研究过程中,我们将比较模拟的电化学曲线与现有的实验,以确认我们的发现或改进我们的模型。工程目标是优化成分以及生产条件,以加速Li扩散,同时抑制降解。我们研究的直接影响是深入了解电池材料中的动力学过程,这将有助于确定限速步骤并解决扩散率测量中的差异。最终,这些见解可能会导致新的电池便宜,充电速度更快,寿命更长,从而减少我们的环境足迹。在更广泛的影响上,该计划中开发的计算框架将有利于相关领域,如合金腐蚀和电化学CO2捕获,通过实现长时间尺度和高精度的动力学模拟。最重要的是,该计划将为下一代研究人员提供最先进的方法和批判性思维技能。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiao, Penghao其他文献

Theoretical Study of the Structural Evolution of a Na2FeMn(CN)6 Cathode upon Na Intercalation
  • DOI:
    10.1021/acs.chemmater.5b01132
  • 发表时间:
    2015-05-26
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Xiao, Penghao;Song, Jie;Henkelman, Graeme
  • 通讯作者:
    Henkelman, Graeme
Communication: Calculations of the (2 x 1)-O reconstruction kinetics on Cu(110)
  • DOI:
    10.1063/1.4978578
  • 发表时间:
    2017-03-21
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    Lian, Xin;Xiao, Penghao;Henkelman, Graeme
  • 通讯作者:
    Henkelman, Graeme
Enhanced Charge-Transfer Kinetics by Anion Surface Modification of LiFePO4
  • DOI:
    10.1021/cm301569m
  • 发表时间:
    2012-08-28
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Park, Kyu-Sung;Xiao, Penghao;Goodenough, John B.
  • 通讯作者:
    Goodenough, John B.
Additional Sodium Insertion into Polyanionic Cathodes for Higher-Energy Na-Ion Batteries
  • DOI:
    10.1002/aenm.201700514
  • 发表时间:
    2017-09-20
  • 期刊:
  • 影响因子:
    27.8
  • 作者:
    Bianchini, Matteo;Xiao, Penghao;Ceder, Gerbrand
  • 通讯作者:
    Ceder, Gerbrand
Morphological Dependence of Lithium Insertion in Nanocrystalline TiO2(B) Nanoparticles and Nanosheets
  • DOI:
    10.1021/jz300766a
  • 发表时间:
    2012-08-02
  • 期刊:
  • 影响因子:
    5.7
  • 作者:
    Dylla, Anthony G.;Xiao, Penghao;Stevenson, Keith J.
  • 通讯作者:
    Stevenson, Keith J.

Xiao, Penghao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xiao, Penghao', 18)}}的其他基金

Resolving Kinetic Limitations of Battery Materials from First Principles
从第一原理解决电池材料的动力学限制
  • 批准号:
    DGECR-2022-00001
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Launch Supplement

相似国自然基金

关于Kinetic Cucker-Smale模型及相关耦合模型的适定性研究
  • 批准号:
    12001530
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
带奇性的 Kinetic Cucker-Smale 模型在随机环境中的平均场极限及时间渐近行为研究
  • 批准号:
    11801194
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
Kinetic Monte Carlo 模拟薄膜生长机理的研究
  • 批准号:
    10574059
  • 批准年份:
    2005
  • 资助金额:
    12.0 万元
  • 项目类别:
    面上项目

相似海外基金

RUI: Spectroscopic Characterization and Low Temperature Kinetic Study of Hydrogenated Aromatic Radicals
RUI:氢化芳香族自由基的光谱表征和低温动力学研究
  • 批准号:
    2348916
  • 财政年份:
    2024
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Standard Grant
Collaborative Research: On New Directions for the Derivation of Wave Kinetic Equations
合作研究:波动力学方程推导的新方向
  • 批准号:
    2306378
  • 财政年份:
    2024
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Standard Grant
Diffusion in Kinetic Equations
动力学方程中的扩散
  • 批准号:
    2350263
  • 财政年份:
    2024
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Standard Grant
CAREER: Well-posedness and long-time behavior of reaction-diffusion and kinetic equations
职业:反应扩散和动力学方程的适定性和长期行为
  • 批准号:
    2337666
  • 财政年份:
    2024
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Continuing Grant
Collaborative Research: On New Directions for the Derivation of Wave Kinetic Equations
合作研究:波动力学方程推导的新方向
  • 批准号:
    2306379
  • 财政年份:
    2024
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Standard Grant
ERI: Experimental Investigation of Compressibility Effects on Turbulent Kinetic Energy Production in Supersonic Flows
ERI:压缩性对超音速流中湍动能产生的影响的实验研究
  • 批准号:
    2347416
  • 财政年份:
    2024
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Standard Grant
CDS&E:CAS:Automated Embedded Correlated Wavefunction Theory for Kinetic Modeling in Heterogeneous Catalysis
CDS
  • 批准号:
    2349619
  • 财政年份:
    2024
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Standard Grant
Data rich kinetic experimentation for deeper understanding of organic reactions.
数据丰富的动力学实验可更深入地了解有机反应。
  • 批准号:
    2896337
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Studentship
Electron-only Magnetic Reconnection and Role of Reconnection in Kinetic Plasma Turbulence
仅电子磁重联以及重联在动等离子体湍流中的作用
  • 批准号:
    2325511
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Standard Grant
RUI: Large Kinetic Isotope Effects as Mechanistic Indicators in Organometallic Chemistry
RUI:大动力学同位素效应作为有机金属化学的机械指标
  • 批准号:
    2247038
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了