Novel phases and phenomena in quantum materials
量子材料中的新相和现象
基本信息
- 批准号:RGPIN-2019-05302
- 负责人:
- 金额:$ 10.2万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The progression of human civilization is intertwined with its ability to make and use materials. The ages of humanity are distinguished by the materials innovations of their time - from the Stone Age, the Bronze Age, the Iron Age, to what can be called the Silicon Age. The most important invention of the 20th century is the transistor, a device built from silicon that underlies all information technology today - the culmination of several decades of work by physicists worldwide to understand how electrons behave in solids. Our civilization is now at the dawn of the Quantum Age, which will be based on new materials that manifest the full richness of the quantum world. The new ideas that permeate the field of quantum materials today are emergence, entanglement and topology. They have both fundamental and technological implications. The research I propose explores all three. My first objective is to elucidate the nature of the pseudogap phase, a mysterious electronic phase present in cuprate superconductors, widely considered one of the major puzzles in physics. Recent ideas suggest we are dealing with a new state of matter, with topological order and an emergent Higgs field reminiscent of the Higgs boson recently discovered at CERN. To explore this possibility, I will probe the pseudogap phase of several cuprate materials with new measurements in high magnetic fields. Success here could enable the design of new high-temperature superconductors. My second objective is to understand Planckian dissipation, a remarkable phenomenon whereby the flow of electrons in some metals is limited by a scattering time set by Planck's constant. It is now clear that the highly entangled electrons involved here are deeply connected to the highest entropy objects in the cosmos: black holes. I will explore this Planckian dissipation in a number of materials, using various measurements at very low temperature. The knowledge gained by studying strange metals in my lab may advance our understanding of quantum gravity and chaos. It is well established theoretically that under certain conditions the tendency of certain magnetic insulators to form magnetic order at low temperature is frustrated, and the low-temperature state is instead a quantum spin liquid, without order. This new state of matter has not yet been solidly confirmed by experiment. However, the very recent observation of a quantized thermal Hall conductivity in one material provides tantalizing evidence of a quantum spin liquid, with topological excitations called Majorana fermions. My third major objective is to confirm this revolutionary observation and explore this bright new frontier. The definitive observation of Majorana fermions could usher in an era of topological quantum computing, a possibility that is already being explored by some corporations.
人类文明的进步与其制造和使用材料的能力交织在一起。人类的各个时代以其时代的材料创新而区分-从石器时代,青铜时代,铁器时代,到可以称为硅时代的时代。20世纪世纪最重要的发明是晶体管,这是一种由硅制成的器件,是当今所有信息技术的基础--这是全世界物理学家几十年来为了解电子在固体中的行为所做工作的顶峰。我们的文明现在正处于量子时代的黎明,这将基于新材料,体现量子世界的丰富性。 今天渗透到量子材料领域的新思想是涌现、纠缠和拓扑。它们既有基本的影响,也有技术的影响。我所提出的研究探讨了这三个方面。我的第一个目标是阐明赝能隙相的性质,赝能隙相是铜氧化物超导体中存在的一种神秘的电子相,被广泛认为是物理学中的主要难题之一。最近的想法表明,我们正在处理一种新的物质状态,具有拓扑秩序和新兴的希格斯场,让人想起最近在欧洲核子研究中心发现的希格斯玻色子。为了探索这种可能性,我将在高磁场中用新的测量方法探测几种铜酸盐材料的赝能隙相。这方面的成功可以使新的高温超导体的设计成为可能。我的第二个目标是理解普朗克耗散,这是一个显着的现象,即电子在某些金属中的流动受到普朗克常数设定的散射时间的限制。现在很清楚,这里涉及的高度纠缠的电子与宇宙中熵最高的物体--黑洞--有着深刻的联系。我将在非常低的温度下使用各种测量来探索许多材料中的普朗克耗散。在我的实验室里通过研究奇怪的金属获得的知识可能会促进我们对量子引力和混沌的理解。 理论上已经很好地建立了,在某些条件下,某些磁性绝缘体在低温下形成磁性有序的趋势受到阻碍,并且低温状态是量子自旋液体,没有秩序。这种新的物质状态还没有被实验证实。然而,最近在一种材料中观察到的量子化霍尔热导率提供了量子自旋液体的诱人证据,其拓扑激发称为马约拉纳费米子。我的第三个主要目标是证实这一革命性的观察,并探索这一光明的新领域。对马约拉纳费米子的明确观测可能会开启拓扑量子计算的时代,一些公司已经在探索这种可能性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Taillefer, Louis其他文献
Anisotropic violation of the Wiedemann-Franz law at a quantum critical point
- DOI:
10.1126/science.1140762 - 发表时间:
2007-06-01 - 期刊:
- 影响因子:56.9
- 作者:
Tanatar, Makariy A.;Paglione, Johnpierre;Taillefer, Louis - 通讯作者:
Taillefer, Louis
Pseudogap temperature T* of cuprate superconductors from the Nernst effect
- DOI:
10.1103/physrevb.97.064502 - 发表时间:
2018-02-01 - 期刊:
- 影响因子:3.7
- 作者:
Cyr-Choiniere, O.;Daou, R.;Taillefer, Louis - 通讯作者:
Taillefer, Louis
Seebeck Coefficient in a Cuprate Superconductor: Particle-Hole Asymmetry in the Strange Metal Phase and Fermi Surface Transformation in the Pseudogap Phase
- DOI:
10.1103/physrevx.12.011037 - 发表时间:
2022-02-25 - 期刊:
- 影响因子:12.5
- 作者:
Gourgout, A.;Grissonnanche, G.;Taillefer, Louis - 通讯作者:
Taillefer, Louis
Zooming on the quantum critical point in Nd-LSCO
- DOI:
10.1016/j.physc.2009.11.073 - 发表时间:
2010-12-01 - 期刊:
- 影响因子:1.7
- 作者:
Cyr-Choiniere, Olivier;Daou, R.;Taillefer, Louis - 通讯作者:
Taillefer, Louis
Enhancement of the Nernst effect by stripe order in a high-Tc superconductor
- DOI:
10.1038/nature07931 - 发表时间:
2009-04-09 - 期刊:
- 影响因子:64.8
- 作者:
Cyr-Choiniere, Olivier;Daou, R.;Taillefer, Louis - 通讯作者:
Taillefer, Louis
Taillefer, Louis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Taillefer, Louis', 18)}}的其他基金
Novel phases and phenomena in quantum materials
量子材料中的新相和现象
- 批准号:
RGPIN-2019-05302 - 财政年份:2021
- 资助金额:
$ 10.2万 - 项目类别:
Discovery Grants Program - Individual
Novel phases and phenomena in quantum materials
量子材料中的新相和现象
- 批准号:
RGPIN-2019-05302 - 财政年份:2020
- 资助金额:
$ 10.2万 - 项目类别:
Discovery Grants Program - Individual
Novel phases and phenomena in quantum materials
量子材料中的新相和现象
- 批准号:
RGPIN-2019-05302 - 财政年份:2019
- 资助金额:
$ 10.2万 - 项目类别:
Discovery Grants Program - Individual
High-Temperature Superconductivity
高温超导
- 批准号:
RGPIN-2014-04200 - 财政年份:2018
- 资助金额:
$ 10.2万 - 项目类别:
Discovery Grants Program - Individual
High-Temperature Superconductivity
高温超导
- 批准号:
RGPIN-2014-04200 - 财政年份:2017
- 资助金额:
$ 10.2万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Zintl Phases点缺陷结构与热电性能调控
- 批准号:51771105
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Microscopic mechanism of multiple superconducting phases and Weyl phenomena in the heavy fermion system UTe2
重费米子系统UTe2中多超导相和Weyl现象的微观机制
- 批准号:
21H01039 - 财政年份:2021
- 资助金额:
$ 10.2万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Novel phases and phenomena in quantum materials
量子材料中的新相和现象
- 批准号:
RGPIN-2019-05302 - 财政年份:2021
- 资助金额:
$ 10.2万 - 项目类别:
Discovery Grants Program - Individual
Novel phases and phenomena in quantum materials
量子材料中的新相和现象
- 批准号:
RGPIN-2019-05302 - 财政年份:2020
- 资助金额:
$ 10.2万 - 项目类别:
Discovery Grants Program - Individual
Novel phases and phenomena in quantum materials
量子材料中的新相和现象
- 批准号:
RGPIN-2019-05302 - 财政年份:2019
- 资助金额:
$ 10.2万 - 项目类别:
Discovery Grants Program - Individual
Geometric aspects of optical and transport phenomena in gapless topological phases
无间隙拓扑相中光学和传输现象的几何方面
- 批准号:
1738384 - 财政年份:2018
- 资助金额:
$ 10.2万 - 项目类别:
Continuing Grant
Geometric aspects of optical and transport phenomena in gapless topological phases
无间隙拓扑相中光学和传输现象的几何方面
- 批准号:
1853048 - 财政年份:2018
- 资助金额:
$ 10.2万 - 项目类别:
Continuing Grant
Tuning vanadium dioxide films by extreme straining - local investigations on transition phenomena and exotic phases
通过极端应变调整二氧化钒薄膜 - 对过渡现象和奇异相的局部研究
- 批准号:
362536548 - 财政年份:2017
- 资助金额:
$ 10.2万 - 项目类别:
Research Grants
Topological Phases and Correlation Phenomena in Complex Materials
复杂材料中的拓扑相和相关现象
- 批准号:
1507141 - 财政年份:2015
- 资助金额:
$ 10.2万 - 项目类别:
Continuing Grant
Exploration of Pressure- and Field-Tuned Phenomena and Phases in Mn- and V-based Spinels
锰基和钒基尖晶石中压力和场调谐现象和相的探索
- 批准号:
1464090 - 财政年份:2015
- 资助金额:
$ 10.2万 - 项目类别:
Continuing Grant
New Phases and Phenomena in Orthogonal Bent-Core Liquid Crystals and Their Relationship to Molecular Structure
正交弯核液晶中的新相和现象及其与分子结构的关系
- 批准号:
1306209 - 财政年份:2013
- 资助金额:
$ 10.2万 - 项目类别:
Continuing Grant