Neuroelectronic and optogenetic stimulation for the precise control of corticospinal plasticity

用于精确控制皮质脊髓可塑性的神经电子和光遗传学刺激

基本信息

  • 批准号:
    RGPIN-2017-06120
  • 负责人:
  • 金额:
    $ 3.79万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Through neuroplasticity, the adult brain has the wonderful ability to continually adapt and form new circuits. We take advantage of this phenomenon when we memorize a text or when we practice a musical instrument. As the phrase "practice makes perfect” illustrates, repeating an activity is the key element that allows its consolidation. Several studies have shown that the repetition of neural activity can lead to synaptic potentiation following the principles identified by Hebb more than sixty years ago, often summarized as "neurons that fire together, wire together”. Despite progress in our understanding of activity-dependent synaptic plasticity, we still understand very little about the principles underlying its expression in large-scale in vivo systems.The overall aim of my research program is to identify how neuronal activity can cause changes in connectivity and influence brain function. I am particularly interested in studying how the repetition of activity in circuits responsible for the control of movements can lead to the reorganization of cortical functional maps. The motor system is a great structure to enable us to understand the principles leading to functional reorganization, because we can directly observe its output in terms of muscle activity. To study these principles, I will employ cutting-edge neuroengineering techniques to precisely control patterns of activity in corticospinal circuits. In the laboratory, I will test interventions in rats combining large-scale recordings with the electrical and optogenetic stimulation. These interventions will aim to identify effective combinations of parameters to induce changes in the circuits that link the cortical neurons to motor forelimb muscles. Through this research, I will identify the rules by which neuronal activity leads to system-scale functional changes and effective methods to guide neuroplasticity.
通过神经可塑性,成人大脑具有不断适应和形成新回路的奇妙能力。当我们记忆文本或练习乐器时,我们会利用这种现象。正如“熟能生巧”这句话所说明的那样,重复一项活动是使其巩固的关键要素。多项研究表明,神经活动的重复可以导致突触增强,遵循赫布六十多年前确定的原则,通常概括为“一起放电、连接在一起的神经元”。尽管我们对活动依赖性突触可塑性的理解取得了进展,但我们对其在大规模体内系统中表达的原理仍然知之甚少。我的研究计划的总体目标是确定神经元活动如何引起连接变化并影响大脑功能。我特别感兴趣的是研究负责控制运动的回路中的活动重复如何导致皮质功能图的重组。运动系统是一个很好的结构,使我们能够理解导致功能重组的原理,因为我们可以直接观察其肌肉活动的输出。为了研究这些原理,我将采用尖端的神经工程技术来精确控制皮质脊髓回路的活动模式。在实验室中,我将测试对大鼠的干预措施,将大规模记录与电刺激和光遗传学刺激相结合。这些干预措施的目的是确定有效的参数组合,以诱导连接皮质神经元和运动前肢肌肉的回路发生变化。通过这项研究,我将确定神经元活动导致系统规模功能变化的规则以及指导神经可塑性的有效方法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ethier, Christian其他文献

On the Nature of the Intrinsic Connectivity of the Cat Motor Cortex: Evidence for a Recurrent Neural Network Topology
  • DOI:
    10.1152/jn.91319.2008
  • 发表时间:
    2009-10-01
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Capaday, Charles;Ethier, Christian;Gingras, Denis
  • 通讯作者:
    Gingras, Denis
Corticospinal control of antagonistic muscles in the cat
  • DOI:
    10.1111/j.1460-9568.2007.05778.x
  • 发表时间:
    2007-09-01
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Ethier, Christian;Brizzi, Laurent;Capaday, Charles
  • 通讯作者:
    Capaday, Charles
ELECTRICAL CONDUCTION BLOCK IN LARGE NERVES: HIGH-FREQUENCY CURRENT DELIVERY IN THE NONHUMAN PRIMATE
  • DOI:
    10.1002/mus.22037
  • 发表时间:
    2011-06-01
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Ackermann, D. Michael, Jr.;Ethier, Christian;Kilgore, Kevin L.
  • 通讯作者:
    Kilgore, Kevin L.
Linear summation of cat motor cortex outputs
  • DOI:
    10.1523/jneurosci.5332-05.2006
  • 发表时间:
    2006-05-17
  • 期刊:
  • 影响因子:
    5.3
  • 作者:
    Ethier, Christian;Brizzi, Laurent;Capaday, Charles
  • 通讯作者:
    Capaday, Charles
Movement representation in the primary motor cortex and its contribution to generalizable EMG predictions
  • DOI:
    10.1152/jn.00331.2012
  • 发表时间:
    2013-02-01
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Oby, Emily R.;Ethier, Christian;Miller, Lee E.
  • 通讯作者:
    Miller, Lee E.

Ethier, Christian的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ethier, Christian', 18)}}的其他基金

Neuroelectronic and optogenetic stimulation for the precise control of corticospinal plasticity
用于精确控制皮质脊髓可塑性的神经电子和光遗传学刺激
  • 批准号:
    RGPIN-2017-06120
  • 财政年份:
    2021
  • 资助金额:
    $ 3.79万
  • 项目类别:
    Discovery Grants Program - Individual
Neuroelectronic and optogenetic stimulation for the precise control of corticospinal plasticity
用于精确控制皮质脊髓可塑性的神经电子和光遗传学刺激
  • 批准号:
    RGPIN-2017-06120
  • 财政年份:
    2020
  • 资助金额:
    $ 3.79万
  • 项目类别:
    Discovery Grants Program - Individual
Neuroelectronic and optogenetic stimulation for the precise control of corticospinal plasticity
用于精确控制皮质脊髓可塑性的神经电子和光遗传学刺激
  • 批准号:
    RGPIN-2017-06120
  • 财政年份:
    2019
  • 资助金额:
    $ 3.79万
  • 项目类别:
    Discovery Grants Program - Individual
Neuroelectronic and optogenetic stimulation for the precise control of corticospinal plasticity
用于精确控制皮质脊髓可塑性的神经电子和光遗传学刺激
  • 批准号:
    RGPIN-2017-06120
  • 财政年份:
    2018
  • 资助金额:
    $ 3.79万
  • 项目类别:
    Discovery Grants Program - Individual
Neuroelectronic and optogenetic stimulation for the precise control of corticospinal plasticity
用于精确控制皮质脊髓可塑性的神经电子和光遗传学刺激
  • 批准号:
    RGPIN-2017-06120
  • 财政年份:
    2017
  • 资助金额:
    $ 3.79万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Optogenetic modulation of cardiac vagal function improves prognosis in diabetes
心脏迷走神经功能的光遗传学调节可改善糖尿病的预后
  • 批准号:
    10592195
  • 财政年份:
    2023
  • 资助金额:
    $ 3.79万
  • 项目类别:
Optogenetic Pain Modulator for non-opioid chronic pain management
用于非阿片类慢性疼痛管理的光遗传学疼痛调节器
  • 批准号:
    10701510
  • 财政年份:
    2023
  • 资助金额:
    $ 3.79万
  • 项目类别:
Optogenetic stimulation after spinal cord injury in rodents
啮齿动物脊髓损伤后的光遗传学刺激
  • 批准号:
    488513
  • 财政年份:
    2023
  • 资助金额:
    $ 3.79万
  • 项目类别:
    Operating Grants
Optogenetic stimulation of the corticospinal tract to promote axon growth and improve motor function following spinal cord injury
皮质脊髓束的光遗传学刺激促进轴突生长并改善脊髓损伤后的运动功能
  • 批准号:
    485953
  • 财政年份:
    2022
  • 资助金额:
    $ 3.79万
  • 项目类别:
    Studentship Programs
Investigation of an Optogenetic Vagus Nerve Stimulation Device in an Animal Model of Post-traumatic Stress Disorder
光遗传学迷走神经刺激装置在创伤后应激障碍动物模型中的研究
  • 批准号:
    10614408
  • 财政年份:
    2022
  • 资助金额:
    $ 3.79万
  • 项目类别:
Optogenetic and Chemogenetic Dissection of Cell Transplants
细胞移植的光遗传学和化学遗传学解剖
  • 批准号:
    10617567
  • 财政年份:
    2022
  • 资助金额:
    $ 3.79万
  • 项目类别:
Influence of Dopamine on Motor Learning and Stroke Recovery
多巴胺对运动学习和中风恢复的影响
  • 批准号:
    462457
  • 财政年份:
    2022
  • 资助金额:
    $ 3.79万
  • 项目类别:
    Operating Grants
Optogenetic stimulation of TMEM16F to control phospholipid flip-flop
TMEM16F 的光遗传学刺激控制磷脂触发器
  • 批准号:
    10601109
  • 财政年份:
    2022
  • 资助金额:
    $ 3.79万
  • 项目类别:
Optogenetic stimulation of dI3 interneurons in the spinal cord
脊髓中 dI3 中间神经元的光遗传学刺激
  • 批准号:
    575012-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 3.79万
  • 项目类别:
    University Undergraduate Student Research Awards
Optogenetic stimulation of TMEM16F to control phospholipid flip-flop
TMEM16F 的光遗传学刺激控制磷脂触发器
  • 批准号:
    10433070
  • 财政年份:
    2022
  • 资助金额:
    $ 3.79万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了