Modeling Longitudinal Data with Complex Structures

对具有复杂结构的纵向数据进行建模

基本信息

  • 批准号:
    RGPIN-2022-03333
  • 负责人:
  • 金额:
    $ 1.38万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Longitudinal data refer to data collected sequentially from the same set of individuals over time and they are key to understanding the global evolution of a phenomenon such as biological processes. In the era of big data, analysis of longitudinal data is faced with new challenges, such as high dimensionality, irregularity, heterogeneity and computational burden. Moreover, multi-view longitudinal data have become increasingly common in many research areas. This type of data refers to longitudinal data collected from multiple sources describing the same set of individuals. For example, multi-view longitudinal data may include different types of omics (genomics, transcriptomics, proteomics) data, electronic medical record data, and clinical symptoms measured on the same set of patients during multiple follow-up visits. The long-term goal of my research program is to develop flexible, generalizable and interpretable statistical learning methods to model biomedical data collected from multiple sources and with complex (e.g. high-dimensional, incomplete, heterogeneous) structures. In the short term, my research program will contribute to advancing the field of mathematics and statistics via three objectives. The first objective is to develop scalable Bayesian methods for clustering multivariate longitudinal data with distinct structures. We will develop data-driven approaches to determine the number of clusters, based on methods such as the Dirichlet process mixture model and mixtures of finite mixtures model. Variational inference algorithms will be derived and implementation software packages will be developed to facilitate fast and efficient computation. The second objective is to develop scalable Bayesian methods for dynamic clustering of multivariate longitudinal data with an unknown number of clusters. We will develop a class of dynamic clustering model that directly assigns class membership for each time interval by incorporating information from time-dependent variables that are updated in each time interval. The third objective is to develop a class of scalable Bayesian models for clustering multi-view longitudinal data with an unknown number of clusters. The proposed methods will be evaluated using both simulated and real datasets. These real datasets will be obtained from research platforms such as the Canadian Cancer Trials Group at Queen's University and the CHILD Cohort Study. My research program promises a notable advancement and innovation in mathematics and statistics in that this research program innovates new statistical methodologies and scalable computational tools to tackle a range of problems related to analyzing longitudinal data with complex structures. The open sources and user-friendly software packages developed from our program will facilitate a wide application of our proposed models and will create an even larger impact on the natural sciences and engineering research community in Canada and worldwide.
纵向数据是指在一段时间内从同一组个体连续收集的数据,它们是理解生物过程等现象的全球演变的关键。在大数据时代,纵向数据的分析面临着高维、不规则、异构性和计算负担等新的挑战。此外,多视角纵向数据在许多研究领域中已经变得越来越常见。这类数据是指从描述同一组个体的多个来源收集的纵向数据。例如,多视图纵向数据可以包括不同类型的组学(基因组学、转录组学、蛋白质组学)数据、电子病历数据以及在多次随访期间对同一组患者测量的临床症状。我的研究计划的长期目标是开发灵活、可推广和可解释的统计学习方法,以对从多个来源收集的具有复杂(如高维、不完整、异质)结构的生物医学数据进行建模。在短期内,我的研究计划将通过三个目标促进数学和统计领域的发展。第一个目标是开发具有不同结构的多变量纵向数据的可伸缩贝叶斯方法。我们将基于Dirichlet过程混合模型和有限混合模型等方法,开发数据驱动的方法来确定簇的数量。将推导出变分推理算法,并开发实现软件包,以促进快速和高效的计算。第二个目标是发展可伸缩的贝叶斯方法,用于具有未知聚类数目的多变量纵向数据的动态聚类。我们将开发一类动态聚类模型,通过结合每个时间间隔中更新的依赖于时间的变量的信息,直接为每个时间间隔分配类成员资格。第三个目标是开发一类可伸缩的贝叶斯模型,用于对具有未知聚类数的多视点纵向数据进行聚类。所提出的方法将使用模拟数据集和真实数据集进行评估。这些真实的数据集将从研究平台获得,如女王大学的加拿大癌症试验小组和儿童队列研究。我的研究计划承诺在数学和统计学方面取得显着的进步和创新,因为这个研究计划创新了新的统计方法和可扩展的计算工具,以解决与分析具有复杂结构的纵向数据相关的一系列问题。根据我们的计划开发的开源和用户友好的软件包将促进我们建议的模型的广泛应用,并将对加拿大和世界各地的自然科学和工程研究社区产生更大的影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lu, Zihang其他文献

Mindfulness on Rumination in Patients with Depressive Disorder: A Systematic Review and Meta-Analysis of Randomized Controlled Trials.
Predicting long-term survival after de novo cardioverter-defibrillator implantation for primary prevention: A population based study.
  • DOI:
    10.1016/j.heliyon.2023.e23355
  • 发表时间:
    2024-01-15
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Wang, Chang Nancy;Lu, Zihang;Simpson, Christopher S.;Lee, Douglas S.;Tranmer, Joan E.
  • 通讯作者:
    Tranmer, Joan E.
Effects of childhood trauma on nonsuicidal self-injury in adolescent patients with bipolar II depression.
  • DOI:
    10.1002/brb3.2771
  • 发表时间:
    2022-11
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Zhang, Yanyan;Hu, Zhizhong;Hu, Maorong;Lu, Zihang;Yu, Huijuan;Yuan, Xin
  • 通讯作者:
    Yuan, Xin
The effectiveness of exposure and response prevention combined with pharmacotherapy for obsessive-compulsive disorder: A systematic review and meta-analysis.
  • DOI:
    10.3389/fpsyt.2022.973838
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    Mao, Lingyun;Hu, Maorong;Luo, Lan;Wu, Yunhong;Lu, Zihang;Zou, Jingzhi
  • 通讯作者:
    Zou, Jingzhi
Bayesian approaches to variable selection: a comparative study from practical perspectives

Lu, Zihang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lu, Zihang', 18)}}的其他基金

Modeling Longitudinal Data with Complex Structures
对具有复杂结构的纵向数据进行建模
  • 批准号:
    DGECR-2022-00442
  • 财政年份:
    2022
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Discovery Launch Supplement

相似海外基金

Statistical methods for longitudinal integrated mechanistic modeling of multiview data
多视图数据纵向综合机制建模的统计方法
  • 批准号:
    10445698
  • 财政年份:
    2022
  • 资助金额:
    $ 1.38万
  • 项目类别:
Statistical methods for longitudinal integrated mechanistic modeling of multiview data
多视图数据纵向综合机制建模的统计方法
  • 批准号:
    10685565
  • 财政年份:
    2022
  • 资助金额:
    $ 1.38万
  • 项目类别:
Efficient estimation in a novel hybrid model combining deep learning and joint modeling of longitudinal and time-to-event analysis for multimodal health data
结合深度学习和多模态健康数据纵向和事件时间分析联合建模的新型混合模型的有效估计
  • 批准号:
    559863-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Modeling Longitudinal Data with Complex Structures
对具有复杂结构的纵向数据进行建模
  • 批准号:
    DGECR-2022-00442
  • 财政年份:
    2022
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Discovery Launch Supplement
Development of new methods for the joint modeling of longitudinal and survival data with applications in finance and insurance
开发纵向数据和生存数据联合建模的新方法及其在金融和保险中的应用
  • 批准号:
    557209-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Alliance Grants
Random effects modeling of longitudinal and spatial data with and without zero-inflation.
有和没有零通货膨胀的纵向和空间数据的随机效应建模。
  • 批准号:
    RGPIN-2017-04246
  • 财政年份:
    2022
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Discovery Grants Program - Individual
III: Small: Predictive Modeling from High-Dimensional, Sparsely and Irregularly Sampled, Longitudinal Data
III:小:根据高维、稀疏和不规则采样的纵向数据进行预测建模
  • 批准号:
    2226025
  • 财政年份:
    2022
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Standard Grant
Partially Ordered Item Response Modeling for Longitudinal and Multivariate Data
纵向和多元数据的偏序项目响应建模
  • 批准号:
    2120174
  • 财政年份:
    2021
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Standard Grant
Efficient estimation in a novel hybrid model combining deep learning and joint modeling of longitudinal and time-to-event analysis for multimodal health data
结合深度学习和多模态健康数据纵向和事件时间分析联合建模的新型混合模型的有效估计
  • 批准号:
    559863-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Development of new methods for the joint modeling of longitudinal and survival data with applications in finance and insurance
开发纵向数据和生存数据联合建模的新方法及其在金融和保险中的应用
  • 批准号:
    557209-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Alliance Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了