Statistical models and methods for survival and longitudinal data in clinical and observational studies
临床和观察研究中生存和纵向数据的统计模型和方法
基本信息
- 批准号:RGPIN-2018-05197
- 负责人:
- 金额:$ 4.08万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Due to advances in cancer treatment research, more patients are experiencing longer survival and becoming cured. There are increasing demands for appropriate statistical methods to take the cured subjects into account in various complicated sampling designs and models assumptions. Advanced technology also generates big data in various forms, such as tissue microarray data in cancer biology studies. The wide use of observational administrative databases for health service research also creates challenges in causal inferences in the era of big data.Developing novel statistical models, estimation methods, and accompanying software for analyzing censored survival data and longitudinal data arising in observational and clinical studies has been the primary topic of our research program. We will continue this research program with focus on issues including, but not limited to:1) Development of model assessment tools and flexible nonparametric models for survival data with a cured fraction2) Properly modeling correlated survival times and variable selection using marginal survival models and marginal cure models with high-dimensional data3) Causal inference to determine treatment effects with high-dimensional administrative databases4) Predictive biomarkers determination for tissue microarray data and joint models for survival and longitudinal data.5) Development of R packages and SAS macros for proposed models and methods for public useIt is anticipated that this research will generate new statistical methods for statisticians working with high-dimensional clinical and observational data. The new methods will also have impact on other fields of natural science and engineering where event times are collected and analyzed, such as reliability. The research stimulates not only new development in the statistics models and theory, but also knowledge transfer from statistical models to statistical applications due to the development of software for public use to enhance reproducibility and applicability of the proposed research work. The research program will also provide suitable opportunities for trainees at levels from masters students to post-doctoral fellows.
由于癌症治疗研究的进步,越来越多的患者经历了更长的生存期并被治愈。在各种复杂的抽样设计和模型假设中,越来越需要适当的统计方法来考虑被治愈的对象。先进的技术也会产生各种形式的大数据,比如癌症生物学研究中的组织微阵列数据。在卫生服务研究中广泛使用观察性行政数据库也给大数据时代的因果推理带来了挑战。开发新的统计模型,估计方法,以及用于分析观察和临床研究中出现的截尾生存数据和纵向数据的配套软件一直是我们研究计划的主要主题。我们将继续这个研究项目,重点关注的问题包括,但不限于:1)开发模型评估工具和具有治愈部分的生存数据的灵活的非参数模型2)使用具有高维数据的边际生存模型和边际治愈模型正确建模相关生存时间和变量选择3)使用高维管理数据库确定治疗效果的因果推理4)组织微阵列数据的预测性生物标志物测定以及生存和纵向数据的联合模型。5)开发R包和SAS宏,用于建议的模型和方法,供公众使用。预计本研究将为统计学家处理高维临床和观察数据产生新的统计方法。该方法还将对收集和分析事件时间的自然科学和工程领域的可靠性等产生影响。这项研究不仅促进了统计模型和理论的新发展,而且由于开发了供公众使用的软件,以提高所提出的研究工作的可重复性和适用性,从而促进了从统计模型到统计应用的知识转移。该研究项目还将为从硕士生到博士后的学员提供合适的机会。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peng, Yingwei其他文献
Explaining regional variations in colon cancer survival in Ontario, Canada: a population-based retrospective cohort study.
解释了加拿大安大略省结肠癌生存的区域差异:一项基于人群的回顾性队列研究。
- DOI:
10.1136/bmjopen-2021-059597 - 发表时间:
2022-09-19 - 期刊:
- 影响因子:2.9
- 作者:
Webber, Colleen;Brundage, Michael;Hanna, Timothy P.;Booth, Christopher M.;Kennedy, Erin;Kong, Weidong;Peng, Yingwei;Whitehead, Marlo;Groome, Patti A. - 通讯作者:
Groome, Patti A.
A population-based study of the treatment effect of first-line ipilimumab for metastatic or unresectable melanoma
- DOI:
10.1097/cmr.0000000000000582 - 发表时间:
2019-12-01 - 期刊:
- 影响因子:2.2
- 作者:
Drysdale, Erik;Peng, Yingwei;Hanna, Timothy P. - 通讯作者:
Hanna, Timothy P.
A support vector machine based semiparametric mixture cure model
- DOI:
10.1007/s00180-019-00931-w - 发表时间:
2019-11-04 - 期刊:
- 影响因子:1.3
- 作者:
Li, Peizhi;Peng, Yingwei;Dong, Qingli - 通讯作者:
Dong, Qingli
Prediction accuracy for the cure probabilities in mixture cure models
- DOI:
10.1177/0962280217708673 - 发表时间:
2017-10-01 - 期刊:
- 影响因子:2.3
- 作者:
Jiang, Wenyu;Sun, Haoyu;Peng, Yingwei - 通讯作者:
Peng, Yingwei
Residual-based model diagnosis methods for mixture cure models
- DOI:
10.1111/biom.12582 - 发表时间:
2017-06-01 - 期刊:
- 影响因子:1.9
- 作者:
Peng, Yingwei;Taylor, Jeremy M. G. - 通讯作者:
Taylor, Jeremy M. G.
Peng, Yingwei的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peng, Yingwei', 18)}}的其他基金
Statistical models and methods for survival and longitudinal data in clinical and observational studies
临床和观察研究中生存和纵向数据的统计模型和方法
- 批准号:
RGPIN-2018-05197 - 财政年份:2021
- 资助金额:
$ 4.08万 - 项目类别:
Discovery Grants Program - Individual
Statistical models and methods for survival and longitudinal data in clinical and observational studies
临床和观察研究中生存和纵向数据的统计模型和方法
- 批准号:
RGPIN-2018-05197 - 财政年份:2020
- 资助金额:
$ 4.08万 - 项目类别:
Discovery Grants Program - Individual
Statistical models and methods for survival and longitudinal data in clinical and observational studies
临床和观察研究中生存和纵向数据的统计模型和方法
- 批准号:
RGPIN-2018-05197 - 财政年份:2019
- 资助金额:
$ 4.08万 - 项目类别:
Discovery Grants Program - Individual
Statistical models and methods for survival and longitudinal data in clinical and observational studies
临床和观察研究中生存和纵向数据的统计模型和方法
- 批准号:
RGPIN-2018-05197 - 财政年份:2018
- 资助金额:
$ 4.08万 - 项目类别:
Discovery Grants Program - Individual
Novel statistical models and estimation methods for survival and longitudinal data.
生存和纵向数据的新颖统计模型和估计方法。
- 批准号:
217431-2013 - 财政年份:2017
- 资助金额:
$ 4.08万 - 项目类别:
Discovery Grants Program - Individual
Novel statistical models and estimation methods for survival and longitudinal data.
生存和纵向数据的新颖统计模型和估计方法。
- 批准号:
217431-2013 - 财政年份:2016
- 资助金额:
$ 4.08万 - 项目类别:
Discovery Grants Program - Individual
Novel statistical models and estimation methods for survival and longitudinal data.
生存和纵向数据的新颖统计模型和估计方法。
- 批准号:
217431-2013 - 财政年份:2015
- 资助金额:
$ 4.08万 - 项目类别:
Discovery Grants Program - Individual
Novel statistical models and estimation methods for survival and longitudinal data.
生存和纵向数据的新颖统计模型和估计方法。
- 批准号:
217431-2013 - 财政年份:2014
- 资助金额:
$ 4.08万 - 项目类别:
Discovery Grants Program - Individual
Novel statistical models and estimation methods for survival and longitudinal data.
生存和纵向数据的新颖统计模型和估计方法。
- 批准号:
217431-2013 - 财政年份:2013
- 资助金额:
$ 4.08万 - 项目类别:
Discovery Grants Program - Individual
Statistical methodologies for survival data with possible correlated survival times or a possible surviving fraction
具有可能的相关生存时间或可能的生存分数的生存数据的统计方法
- 批准号:
217431-2008 - 财政年份:2012
- 资助金额:
$ 4.08万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
基于广义加性模型的组学数据批次效应校正方法及应用
- 批准号:JCZRYB202500058
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
作物数量性状全基因组选择新方法及其应用研究
- 批准号:D25C130003
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
几类大数据整体统计推断方法与理论研究
- 批准号:Y24A010038
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
城市高时空分辨率碳排放的反演方法、驱动机
制与减排路径研究
- 批准号:TGS24D010016
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
多粒度概率回归建模理论与方法
- 批准号:2024JJ4069
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
面向数据异质的个性化模型学习及聚合方法研究
- 批准号:
- 批准年份:2024
- 资助金额:15.0 万元
- 项目类别:省市级项目
缺失数据下模型平均方法的研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于高通量测序的表观遗传学数据的统计方法研究
- 批准号:24ZR1456400
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
动态形变统计模型驱动的小样本腹部CT多器官分割方法研究
- 批准号:
- 批准年份:2024
- 资助金额:10.0 万元
- 项目类别:省市级项目
函数型异方差模型的非线性构建方法及统计推断
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:青年科学基金项目
相似海外基金
Statistical Models and Methods for Complex Data in Metric Spaces
度量空间中复杂数据的统计模型和方法
- 批准号:
2310450 - 财政年份:2023
- 资助金额:
$ 4.08万 - 项目类别:
Standard Grant
Integrated experimental and statistical tools for ultra-high-throughput spatial transcriptomics
用于超高通量空间转录组学的集成实验和统计工具
- 批准号:
10727130 - 财政年份:2023
- 资助金额:
$ 4.08万 - 项目类别:
Statistical Methods for Biomarkers Identification Using High-resolution Diffusion MRI
使用高分辨率扩散 MRI 识别生物标志物的统计方法
- 批准号:
10667994 - 财政年份:2023
- 资助金额:
$ 4.08万 - 项目类别:
Statistical and high-throughput models of enhancer function and evolution
增强子功能和进化的统计和高通量模型
- 批准号:
10846272 - 财政年份:2023
- 资助金额:
$ 4.08万 - 项目类别:
Interpretable Bayesian Non-linear statistical learning models for multi-omics data integration
用于多组学数据集成的可解释贝叶斯非线性统计学习模型
- 批准号:
10714882 - 财政年份:2023
- 资助金额:
$ 4.08万 - 项目类别:
Liver Fibrosis: Leveraging Novel Statistical Methods to Determine Optimal Screening Strategy for People Living with Type 2 Diabetes
肝纤维化:利用新的统计方法确定 2 型糖尿病患者的最佳筛查策略
- 批准号:
488421 - 财政年份:2023
- 资助金额:
$ 4.08万 - 项目类别:
Operating Grants
Statistical Methods for Data Integration and Applications to Genome-wide Association Studies
数据集成的统计方法及其在全基因组关联研究中的应用
- 批准号:
10889298 - 财政年份:2023
- 资助金额:
$ 4.08万 - 项目类别:
Improving the design and statistical analysis of cluster-randomized trials on tropical infectious diseases
改进热带传染病整群随机试验的设计和统计分析
- 批准号:
10570440 - 财政年份:2023
- 资助金额:
$ 4.08万 - 项目类别:
Statistical methods for analysis of high-dimensional mediation pathways
高维中介路径分析的统计方法
- 批准号:
10582932 - 财政年份:2023
- 资助金额:
$ 4.08万 - 项目类别:
SCH: Novel and Interpretable Statistical Learning for Brain Images in AD/ADRDs
SCH:针对 AD/ADRD 大脑图像的新颖且可解释的统计学习
- 批准号:
10816764 - 财政年份:2023
- 资助金额:
$ 4.08万 - 项目类别: