Managing Constraints as Data
将约束作为数据进行管理
基本信息
- 批准号:RGPIN-2017-05265
- 负责人:
- 金额:$ 1.46万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Database has been a cornerstone in the data-driven digital age. Events and observations in the world generate large volumes of data which are safely stored in databases and efficiently analyzed by database queries. The results of the analysis further support decision making of a wide range of software systems, e.g. payroll and financial management, control systems, and operational research. These decisions must respect safety and correctness constraints. Examples of constraints are everywhere: payroll deadlines, maximal power capacity, server availability etc.. While the database technology excels at data storage and analytics, presently it fails to provide the same level of effectiveness for the management and verification of constraints. Currently, to fill this gap, application specific programs need to be manually developed by programmers. But such efforts are costly and highly error-prone. Constraint violations as the results of human errors and buggy software are frequently observed in different sectors of the industry and governments. This proposed research program is aimed to rectify the situation by extending the role of the database to include the management of constraints.The applicant's objective is to extend the data model and the query language of databases to include logical constraints as first-class citizens just like data. This allows a well-defined declarative semantics to store and manage constraints and data in a unified framework. Building on top of state-of-art A.I. constraint satisfaction algorithms, the research program is to augment existing database technology to actively reason about decisions in the presence of constraints and data, thus alleviating the need for secondary safety-maintenance software. Such database engines can verify and actively synthesize data-driven decisions that are safe, correct and optimal.The proposed research program contributes to the theory and system design of future databases. Towards database theory, we will be studying (1) new constraint query operators and their properties, (2) new algorithms to manage mutually conflicting, incomplete and time varying constraints, and (3) distributed algorithms that are capable of processing large collections of constraints at Internet scale. Towards the system design of constraint database engines, we will perform research on (4) integration of constraint solvers with database engines, (5) implementation of highly concurrent constraint solvers, and (6) user interface design and implementation for interactive and crowdsourcing constraint satisfaction and verification.In summary, the success of the proposed research program will enable databases to manage constraints using a declarative query language. Database engines will help software systems to make safer decisions that are provably correct with respect to the constraints in the database.
数据库已经成为数据驱动的数字时代的基石。世界上的事件和观察产生了大量的数据,这些数据被安全地存储在数据库中,并通过数据库查询有效地分析。分析结果进一步支持广泛软件系统的决策制定,例如工资和财务管理、控制系统和运筹学。这些决策必须尊重安全性和正确性约束。约束的例子随处可见:工资截止日期、最大容量、服务器可用性等。虽然数据库技术在数据存储和分析方面表现出色,但目前它无法为约束的管理和验证提供相同水平的有效性。目前,为了填补这一空白,需要程序员手动开发特定于应用程序的程序。但这种努力代价高昂,而且极易出错。由于人为错误和有缺陷的软件而导致的约束违反在行业和政府的不同部门中经常被观察到。这个拟议的研究计划旨在通过扩展数据库的作用来包括约束管理来纠正这种情况。申请人的目标是扩展数据库的数据模型和查询语言,使逻辑约束像数据一样成为一等公民。这允许定义良好的声明性语义在统一框架中存储和管理约束和数据。该研究计划建立在最先进的人工智能约束满足算法的基础上,旨在增强现有的数据库技术,在存在约束和数据的情况下积极地推理决策,从而减轻对二级安全维护软件的需求。这样的数据库引擎可以验证并主动合成安全、正确和最优的数据驱动决策。提出的研究方案对未来数据库的理论和系统设计具有一定的指导意义。对于数据库理论,我们将研究(1)新的约束查询运算符及其属性,(2)管理相互冲突、不完整和时变约束的新算法,以及(3)能够在互联网规模上处理大量约束集合的分布式算法。在约束数据库引擎的系统设计方面,我们将研究(4)约束求解器与数据库引擎的集成,(5)高并发约束求解器的实现,以及(6)交互式和众包约束满足与验证的用户界面设计与实现。总之,该研究计划的成功将使数据库能够使用声明性查询语言来管理约束。数据库引擎将帮助软件系统做出更安全的决策,这些决策相对于数据库中的约束是可证明正确的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
PU, KEN其他文献
PU, KEN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('PU, KEN', 18)}}的其他基金
Managing Constraints as Data
将约束作为数据进行管理
- 批准号:
RGPIN-2017-05265 - 财政年份:2021
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Managing Constraints as Data
将约束作为数据进行管理
- 批准号:
RGPIN-2017-05265 - 财政年份:2020
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Managing Constraints as Data
将约束作为数据进行管理
- 批准号:
RGPIN-2017-05265 - 财政年份:2018
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Managing Constraints as Data
将约束作为数据进行管理
- 批准号:
RGPIN-2017-05265 - 财政年份:2017
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Financial Constraints in China
and Their Policy Implications
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国优秀青年学 者研究基金项目
相似海外基金
Collaborative Research: Data-Driven Elastic Shape Analysis with Topological Inconsistencies and Partial Matching Constraints
协作研究:具有拓扑不一致和部分匹配约束的数据驱动的弹性形状分析
- 批准号:
2402555 - 财政年份:2024
- 资助金额:
$ 1.46万 - 项目类别:
Standard Grant
Non-local contributions to b->smumu processes and constraints on sbcc operators from data
对 b->smumu 过程的非本地贡献以及数据对 sbcc 运算符的约束
- 批准号:
2876664 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别:
Studentship
Constraints from multiple low frequency data on the long wavelength density structure in the deep mantle
多个低频数据对深部地幔长波长密度结构的约束
- 批准号:
2326226 - 财政年份:2022
- 资助金额:
$ 1.46万 - 项目类别:
Continuing Grant
Reconciling US Southwest Hydroclimate Model Projections and Geologic Data: Constraints from the Miocene Climate Optimum
协调美国西南水文气候模型预测和地质数据:中新世气候最佳值的限制
- 批准号:
2202916 - 财政年份:2022
- 资助金额:
$ 1.46万 - 项目类别:
Standard Grant
Incidence regression, variable selection and conditional density estimation from prevalent cohort survival data under stochastic constraints
随机约束下流行队列生存数据的发生率回归、变量选择和条件密度估计
- 批准号:
RGPIN-2018-05618 - 财政年份:2022
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Incidence regression, variable selection and conditional density estimation from prevalent cohort survival data under stochastic constraints
随机约束下流行队列生存数据的发生率回归、变量选择和条件密度估计
- 批准号:
RGPIN-2018-05618 - 财政年份:2021
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
CAREER: Frontiers of Distributed Machine Learning with Communication, Computation and Data Constraints
职业:具有通信、计算和数据约束的分布式机器学习前沿
- 批准号:
2045694 - 财政年份:2021
- 资助金额:
$ 1.46万 - 项目类别:
Continuing Grant
Managing Constraints as Data
将约束作为数据进行管理
- 批准号:
RGPIN-2017-05265 - 财政年份:2021
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Managing Constraints as Data
将约束作为数据进行管理
- 批准号:
RGPIN-2017-05265 - 财政年份:2020
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: Data-Driven Elastic Shape Analysis with Topological Inconsistencies and Partial Matching Constraints
协作研究:具有拓扑不一致和部分匹配约束的数据驱动的弹性形状分析
- 批准号:
1953244 - 财政年份:2020
- 资助金额:
$ 1.46万 - 项目类别:
Standard Grant