Bayesian Modeling and Scalable Inference for Big Data Streams
大数据流的贝叶斯建模和可扩展推理
基本信息
- 批准号:RGPIN-2019-03962
- 负责人:
- 金额:$ 2.84万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We are in the midst of a data revolution. Driven by recent advances in data measurement, collection, and generation technologies, the proliferation of data is reshaping the landscape of numerous scientific and applied disciplines. Internet-based companies must vie for consumer attention by using the vast quantities of available user data to tailor recommendations and advertisements to individuals; financial trading firms must synthesize terabytes of data daily from the news, company reports, and markets to make informed investments; microbiologists are now faced with analyzing the entire transcriptome of tens of thousands of individual cells; the list goes on. This explosion in data has also caused the redefinition of "data analyst:" no longer just those with in-depth statistical and mathematical training, analysts are arising more and more from other technological disciplines as their main challenges shift towards dealing with the large-scale, streaming data in their respective fields. This presents challenges lying at the intersection of computer science and statistics: we need algorithms and models for learning from data that are computationally tractable and can keep pace with the constant deluge of large-scale, streaming data; but to be trusted by practitioners, they must also be easy to implement and use, and come with rigorous theoretical guarantees on the quality of the learned result. The fundamental goal of my research is to address these challenges by developing effective, practical, and easy-to-use probabilistic machine learning methods for modern large-scale and streaming data. My research proposal involves a multifaceted approach to the challenges of big data, with contributions in three main areas: 1) Easy-to-use, theoretically sound algorithms for inference with large-scale data 2) Flexible models and inference algorithms for streaming data 3) Theoretical analysis of the quality of learned models and approximations The developments in this research program will be made available to the broader community through open-source code releases, guided by the overarching goal of making statistical modeling accessible to the growing diversity of practitioners and applicable to the growing diversity of large-scale, streaming data analysis problems.
我们正处于一场数据革命之中。在数据测量、收集和生成技术的最新进展的推动下,数据的激增正在重塑众多科学和应用学科的格局。基于互联网的公司必须通过使用大量可用的用户数据来为个人量身定制推荐和广告来争夺消费者的注意力;金融交易公司必须每天从新闻、公司报告和市场中综合数TB的数据来进行明智的投资;微生物学家现在面临着分析数万个个体细胞的整个转录组;数据的爆炸性增长也导致了对“数据分析师“的重新定义:分析师不再仅仅是那些接受过深入统计和数学培训的人,他们越来越多地来自其他技术学科,因为他们的主要挑战转向处理各自领域的大规模流数据。这给计算机科学和统计学的交叉点带来了挑战:我们需要从数据中学习的算法和模型,这些算法和模型在计算上是可处理的,并且可以跟上大规模流数据的不断涌入;但是要得到从业者的信任,它们还必须易于实现和使用,并且对学习结果的质量有严格的理论保证。我研究的基本目标是通过为现代大规模和流数据开发有效,实用和易于使用的概率机器学习方法来应对这些挑战。我的研究计划涉及到大数据挑战的多方面方法,在三个主要领域的贡献:1)易于使用,理论上合理的大规模数据推理算法2)流数据的灵活模型和推理算法3)学习模型和近似的质量的理论分析在这个研究计划的发展将提供给更广泛的社区,通过开放,源代码发布,以使统计建模可供日益多样化的从业者使用并适用于日益多样化的大规模流数据分析问题的总体目标为指导。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Campbell, Trevor其他文献
Is Weekend Radiation Therapy Always Justified?
- DOI:
10.1016/j.jmir.2011.08.001 - 发表时间:
2012-03-01 - 期刊:
- 影响因子:1.8
- 作者:
Yeo, Ryan;Campbell, Trevor;Fairchild, Alysa - 通讯作者:
Fairchild, Alysa
Local exchangeability
本地可交换性
- DOI:
10.3150/22-bej1533 - 发表时间:
2023 - 期刊:
- 影响因子:1.5
- 作者:
Campbell, Trevor;Syed, Saifuddin;Yang, Chiao-Yu;Jordan, Michael I.;Broderick, Tamara - 通讯作者:
Broderick, Tamara
Campbell, Trevor的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Campbell, Trevor', 18)}}的其他基金
Bayesian Modeling and Scalable Inference for Big Data Streams
大数据流的贝叶斯建模和可扩展推理
- 批准号:
RGPIN-2019-03962 - 财政年份:2021
- 资助金额:
$ 2.84万 - 项目类别:
Discovery Grants Program - Individual
Bayesian Modeling and Scalable Inference for Big Data Streams
大数据流的贝叶斯建模和可扩展推理
- 批准号:
RGPIN-2019-03962 - 财政年份:2020
- 资助金额:
$ 2.84万 - 项目类别:
Discovery Grants Program - Individual
Bayesian Modeling and Scalable Inference for Big Data Streams
大数据流的贝叶斯建模和可扩展推理
- 批准号:
RGPIN-2019-03962 - 财政年份:2019
- 资助金额:
$ 2.84万 - 项目类别:
Discovery Grants Program - Individual
Bayesian Modeling and Scalable Inference for Big Data Streams
大数据流的贝叶斯建模和可扩展推理
- 批准号:
DGECR-2019-00041 - 财政年份:2019
- 资助金额:
$ 2.84万 - 项目类别:
Discovery Launch Supplement
An extensive parametric study of sliding discharge non-thermal plasma actuators
滑动放电非热等离子体致动器的广泛参数研究
- 批准号:
410333-2011 - 财政年份:2011
- 资助金额:
$ 2.84万 - 项目类别:
Postgraduate Scholarships - Master's
Autonomous space robotics lab summer project
自主空间机器人实验室夏季项目
- 批准号:
382500-2009 - 财政年份:2009
- 资助金额:
$ 2.84万 - 项目类别:
University Undergraduate Student Research Awards
相似国自然基金
Galaxy Analytical Modeling
Evolution (GAME) and cosmological
hydrodynamic simulations.
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
相似海外基金
STTR Phase I: Novel State of Health Measurements Through Advanced Lithium-ion Battery Modeling for Secure and Scalable 2nd-Life Battery Deployment
STTR 第一阶段:通过先进的锂离子电池建模进行新颖的健康状况测量,以实现安全且可扩展的二次电池部署
- 批准号:
2304417 - 财政年份:2023
- 资助金额:
$ 2.84万 - 项目类别:
Standard Grant
EAGER: Scalable Climate Modeling using Message-Passing Recurrent Neural Networks
EAGER:使用消息传递循环神经网络进行可扩展的气候建模
- 批准号:
2335773 - 财政年份:2023
- 资助金额:
$ 2.84万 - 项目类别:
Standard Grant
OAC Core: Geometry-aware and Deep Learning-based Cyberinfrastructure for Scalable Modeling of Solids and Fluids
OAC 核心:基于几何感知和深度学习的网络基础设施,用于固体和流体的可扩展建模
- 批准号:
2211908 - 财政年份:2022
- 资助金额:
$ 2.84万 - 项目类别:
Standard Grant
CAREER: A scalable multiscale modeling framework to explore soot formation in reacting flows
职业:一个可扩展的多尺度建模框架,用于探索反应流中烟灰的形成
- 批准号:
2144290 - 财政年份:2022
- 资助金额:
$ 2.84万 - 项目类别:
Continuing Grant
Development of advanced scalable 3D spatial techniques for multi-spectral LiDAR point cloud modeling of boreal forest inventory attributes, above-ground carbon, and wildfire fuel.
开发先进的可扩展 3D 空间技术,用于北方森林库存属性、地上碳和野火燃料的多光谱 LiDAR 点云建模。
- 批准号:
570298-2022 - 财政年份:2022
- 资助金额:
$ 2.84万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
SCience-INtegrated Predictive modeLing (SCINPL): a novel framework for scalable and interpretable predictive scientific modeling
科学集成预测建模(SCINPL):用于可扩展和可解释的预测科学建模的新颖框架
- 批准号:
2210729 - 财政年份:2022
- 资助金额:
$ 2.84万 - 项目类别:
Standard Grant
Practical, Efficient and Scalable Modeling, Verification and Validation of Safety-Critical Cyber-Physical Systems
安全关键网络物理系统的实用、高效和可扩展的建模、验证和确认
- 批准号:
RGPIN-2020-06751 - 财政年份:2022
- 资助金额:
$ 2.84万 - 项目类别:
Discovery Grants Program - Individual
OpenMM: Scalable biomolecular modeling, simulation, and machine learning
OpenMM:可扩展的生物分子建模、模拟和机器学习
- 批准号:
10441130 - 财政年份:2021
- 资助金额:
$ 2.84万 - 项目类别:
Practical, Efficient and Scalable Modeling, Verification and Validation of Safety-Critical Cyber-Physical Systems
安全关键网络物理系统的实用、高效和可扩展的建模、验证和确认
- 批准号:
RGPIN-2020-06751 - 财政年份:2021
- 资助金额:
$ 2.84万 - 项目类别:
Discovery Grants Program - Individual
Bayesian Modeling and Scalable Inference for Big Data Streams
大数据流的贝叶斯建模和可扩展推理
- 批准号:
RGPIN-2019-03962 - 财政年份:2021
- 资助金额:
$ 2.84万 - 项目类别:
Discovery Grants Program - Individual