Building a Flexible Framework Towards Autonomous Networking Using Machine Learning Techniques
使用机器学习技术构建灵活的自主网络框架
基本信息
- 批准号:RGPIN-2020-06582
- 负责人:
- 金额:$ 2.11万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Machine learning (ML) has made unprecedented advancement in various areas, e.g., voice recognition and image processing. The role of ML is becoming more and more important in numerous disciplines. ML also plays a key role in next generation autonomous networking which has extreme high requirements in quality of service, performance, and security. Examples of ML for networking include applications of ML for network anomaly detection, network traffic prediction, preventive maintenance, etc. ML is data driven, which is more effective than complex algorithm- or model-based approaches to network solutions. However, ML is also nontrivial, and the distributed network systems tremendously hinder the effectiveness of ML, as each node only has limited local information and learning from other nodes is complex. Software-defined networking (SDN) has made a major paradigm shift by converting main control functions on network devices into a logically central controller. Network function virtualization (NFV) has often been adopted by virtualizing network functions that provide flexibility for network operators in managing resources, improving performance, and deploying innovative services. Further, in-band network telemetry (INT), still a developing technique, can improve current network monitoring by providing high network data visibility which is crucial for ML. In addition to ML, SDN also has a substantial impact on INT, as SDN can efficiently request and gather network states and data from INT about the entire network, which enables effective network analytics and greatly simplifies the complexity of ML. On the other hand, NFV can facilitate ML by running ML functions on a separate and powerful device. However, there are still challenges for ML, such as many ML options, long training time, and repetitive training for changing environments. The main objective of the proposed research is to build a flexible system framework that integrates SDN/NFG, ML, and INT. The seamless fusion of those technologies has substantial potential in simplifying the adoption of ML for networking. The framework will be designed to facilitate the selection (either by a human operator or automatically) of an appropriate ML technique that is best suitable for a specific problem, e.g., traffic control or security. The development of the framework will be based on thorough analyses of the characteristics and patterns of network data and the features of different application problems. Moreover, the proposed research is also looking beyond the current network paradigm and ML technologies by considering Internet of Things (IoT) and Information-centric Networking (ICN), and transfer learning across problem domains. The longer-term goal is to investigate the adaptation of the proposed integrative framework for the emerging paradigms. Transfer learning is targeted to reduce the training time needed for ML and to support knowledge reuse when network changes or across analogous domains.
机器学习(ML)在各个领域取得了前所未有的进步,例如,语音识别和图像处理。ML的作用在许多学科中变得越来越重要。ML还在下一代自主网络中发挥着关键作用,该网络对服务质量,性能和安全性有极高的要求。ML用于网络的示例包括ML用于网络异常检测、网络流量预测、预防性维护等的应用。ML是数据驱动的,这比基于复杂算法或模型的网络解决方案方法更有效。然而,ML也是不平凡的,分布式网络系统极大地阻碍了ML的有效性,因为每个节点只有有限的本地信息,并且从其他节点学习是复杂的。软件定义网络(SDN)通过将网络设备上的主要控制功能转换为逻辑上的中央控制器,实现了重大的范式转变。网络功能虚拟化(NFV)通常通过虚拟化网络功能而被采用,所述网络功能为网络运营商在管理资源、提高性能和部署创新服务方面提供灵活性。此外,带内网络遥测(INT)仍然是一种发展中的技术,可以通过提供对ML至关重要的高网络数据可见性来改善当前的网络监控。除了ML之外,SDN还对INT产生了重大影响,因为SDN可以有效地从INT请求和收集关于整个网络的网络状态和数据,从而实现有效的网络分析并大大简化ML的复杂性。另一方面,NFV可以通过在单独且功能强大的设备上运行ML功能来促进ML。然而,机器学习仍然面临挑战,例如机器学习选项多,训练时间长,以及针对不断变化的环境进行重复训练。拟议研究的主要目标是建立一个灵活的系统框架,集成SDN/NFG,ML和INT。这些技术的无缝融合在简化ML的网络采用方面具有巨大的潜力。该框架将被设计为便于选择(由人工操作员或自动)最适合特定问题的适当ML技术,例如,交通管制或安全。该框架的开发将基于对网络数据的特征和模式以及不同应用问题的特征的深入分析。此外,拟议的研究还通过考虑物联网(IoT)和以信息为中心的网络(ICN)以及跨问题领域的转移学习,超越了当前的网络范式和ML技术。较长期的目标是调查拟议的综合框架对新兴范式的适应性。迁移学习的目标是减少机器学习所需的训练时间,并在网络发生变化或跨类似领域时支持知识重用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lung, ChungHorng其他文献
Lung, ChungHorng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lung, ChungHorng', 18)}}的其他基金
Building a Flexible Framework Towards Autonomous Networking Using Machine Learning Techniques
使用机器学习技术构建灵活的自主网络框架
- 批准号:
RGPIN-2020-06582 - 财政年份:2021
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Advanced natural language processing techniques for smart office assistant
先进的自然语言处理技术,智能办公助手
- 批准号:
564715-2021 - 财政年份:2021
- 资助金额:
$ 2.11万 - 项目类别:
Alliance Grants
Building a Flexible Framework Towards Autonomous Networking Using Machine Learning Techniques
使用机器学习技术构建灵活的自主网络框架
- 批准号:
RGPIN-2020-06582 - 财政年份:2020
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Integration of system and software architecture techniques in support of autonomic cloud management
集成系统和软件架构技术,支持自主云管理
- 批准号:
RGPIN-2014-05669 - 财政年份:2018
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Integration of system and software architecture techniques in support of autonomic cloud management
集成系统和软件架构技术,支持自主云管理
- 批准号:
RGPIN-2014-05669 - 财政年份:2017
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Network Function Virtualization: Placement and Performance Optimization
网络功能虚拟化:布局和性能优化
- 批准号:
517800-2017 - 财政年份:2017
- 资助金额:
$ 2.11万 - 项目类别:
Engage Grants Program
Integration of system and software architecture techniques in support of autonomic cloud management
集成系统和软件架构技术,支持自主云管理
- 批准号:
RGPIN-2014-05669 - 财政年份:2016
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Satellite telemetry system and network performance evaluation for long-range unmanned aerial vehicles (UAVs)
远程无人机卫星遥测系统和网络性能评估
- 批准号:
498902-2016 - 财政年份:2016
- 资助金额:
$ 2.11万 - 项目类别:
Engage Grants Program
Integration of system and software architecture techniques in support of autonomic cloud management
集成系统和软件架构技术,支持自主云管理
- 批准号:
RGPIN-2014-05669 - 财政年份:2015
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Integration of system and software architecture techniques in support of autonomic cloud management
集成系统和软件架构技术,支持自主云管理
- 批准号:
RGPIN-2014-05669 - 财政年份:2014
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
A study on prototype flexible multifunctional graphene foam-based sensing grid (柔性多功能石墨烯泡沫传感网格原型研究)
- 批准号:
- 批准年份:2020
- 资助金额:20 万元
- 项目类别:
相似海外基金
Novel Aeroservoelastic Stability Analysis and Augmentation Framework: Application to Next-Generation Flexible Aerial Platforms
新型气动伺服弹性稳定性分析和增强框架:在下一代柔性空中平台中的应用
- 批准号:
RGPIN-2020-06318 - 财政年份:2022
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Building a Flexible Framework Towards Autonomous Networking Using Machine Learning Techniques
使用机器学习技术构建灵活的自主网络框架
- 批准号:
RGPIN-2020-06582 - 财政年份:2021
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Novel Aeroservoelastic Stability Analysis and Augmentation Framework: Application to Next-Generation Flexible Aerial Platforms
新型气动伺服弹性稳定性分析和增强框架:在下一代柔性空中平台中的应用
- 批准号:
RGPIN-2020-06318 - 财政年份:2021
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
A Generalized and Flexible Deep Learning Framework for the Reconstruction of High Dynamic Range Images and Video
用于重建高动态范围图像和视频的通用且灵活的深度学习框架
- 批准号:
2496737 - 财政年份:2021
- 资助金额:
$ 2.11万 - 项目类别:
Studentship
Collaborative Research: A Flexible Framework for Radiation Parameterizations Traceable to Benchmarks
协作研究:可追溯至基准的灵活辐射参数化框架
- 批准号:
1916927 - 财政年份:2020
- 资助金额:
$ 2.11万 - 项目类别:
Standard Grant
Collaborative Research: A Flexible Framework for Radiation Parameterizations Traceable to Benchmarks
协作研究:可追溯至基准的灵活辐射参数化框架
- 批准号:
1916908 - 财政年份:2020
- 资助金额:
$ 2.11万 - 项目类别:
Standard Grant
Continuation of Project Number 104384: Development and commercialisation of a flexible manufacturing process to produce monolithic metal-organic framework (MOF) materials.
项目编号 104384 的延续:生产整体金属有机框架 (MOF) 材料的柔性制造工艺的开发和商业化。
- 批准号:
72997 - 财政年份:2020
- 资助金额:
$ 2.11万 - 项目类别:
Feasibility Studies
Novel Aeroservoelastic Stability Analysis and Augmentation Framework: Application to Next-Generation Flexible Aerial Platforms
新型气动伺服弹性稳定性分析和增强框架:在下一代柔性空中平台中的应用
- 批准号:
RGPIN-2020-06318 - 财政年份:2020
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
CAREER: Flexible and Efficient Exploration of the Bayesian Framework for High Dimensional Modeling
职业:高维建模贝叶斯框架的灵活高效探索
- 批准号:
1943500 - 财政年份:2020
- 资助金额:
$ 2.11万 - 项目类别:
Continuing Grant
Building a Flexible Framework Towards Autonomous Networking Using Machine Learning Techniques
使用机器学习技术构建灵活的自主网络框架
- 批准号:
RGPIN-2020-06582 - 财政年份:2020
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual