复杂环境下复合故障实时诊断理论及其在石化大型机组中的应用验证

批准号:
61673127
项目类别:
面上项目
资助金额:
62.0 万元
负责人:
张清华
依托单位:
学科分类:
F0301.控制理论与技术
结题年份:
2020
批准年份:
2016
项目状态:
已结题
项目参与者:
熊建斌、何俊、孙国玺、覃爱淞、胡勤、邵龙秋、雷高伟、谭巨兴、袁鹏慧
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
微信扫码咨询
中文摘要
针对石化大型机组在复杂环境下,振动监测信号往往存在大量的非线性、随机、不可遍历的信息,导致复合故障难分离的问题。本项目构建一套全新的理论:首先,在申请人团队前期研究基础下,针对传统的无量纲指标数量不足的问题,本项目提出新无量纲指标的构建方法;然后,针对目前所用的匹配算法不能有效准确区分复合故障信号的问题,本项目探讨在热噪声环境下以新无量纲指标为基础,提出一种全新的曲线匹配的方法;其次,以人工免疫、双样本K-S检验、改进证据理论相结合的数据处理为基本分析方法,构建人工免疫及改进证据理论相结合的复合故障分离方法,完善复合故障诊断新理论;最后,将本项目提出的新理论、新方法,借助广东石化装备安全技术协同创新中心、广东省石化装备故障诊断重点实验室的石化大型旋转机械故障诊断实验平台,进行实验室验证;通过理论证明以及实验室验证,把新成果应用于石化大型机组进行现场验证,并验证研究成果的可适用性和可扩展性。
英文摘要
In view of the large petrochemical unit in a complex environment, vibration monitoring signal tend to have a large number of nonlinear, random, not traverse information, resulting in compound fault difficult to separate. This project presents new dimensionless parameter theory, improved evidence theory, genetic programming method and two-sample K-S testing algorithm to deal with the compound fault isolation problem for large-scale petrochemical unit under complex environment. First of all, on the base of summarizing the previous research results of the applicant's team, new dimensionless parameter construction method is proposed aiming at the lack of dimensionless parameters. Secondly, duo to the current algorithm could not distinguish the compound fault efficiently and precisely, new curves matching method is proposed based on new dimensionless parameter in the thermal noise environment. Then, a new analysis method fused artificial immune, two-sample K-S test and improved evidence theory is constucted for compound fault isolation. Finally, to test the reliability of the new theory and new method, the rotating machinery fault diagnosis experiment platform of Guangdong provincial key laboratory of petrochemical equipment fault diagnosis and Guangdong provincial petrochemical equipment safety technology of collaborative innovation center is applied. Through theoretical proof and validation in the laboratory, the new achievements are applied to large-scale unit in petrochemical field to verify and validate the the applicability and scalability of the research results.
针对石化大型机组在复杂环境下,振动监测信号往往存在大量的非线性、随机、不可遍历的信息,导致复合故障难分离的问题。我们构建了一套全新的石化大型机组复合故障分离理论:首先,针对传统的无量纲指标数量不足的问题,提出了互无量纲指标的构建方法,互无量纲指标更能反映信号特性的无故障振动信号和分离出来的故障特征信号。其次,针对目前所用的故障诊断算法难以有效地准确区分复合故障信号的问题,我们探讨了在热噪声环境下以互无量纲指标为基础,提出了一种互无量纲指标、小波包降噪和随机森林相结合的滚动轴承故障诊断方法;再次,采用双样本K-S检验对互无量纲数据样本的累积分布函数曲线检验、改进证据理论相结合的数据处理为基本分析方法,构建了双样本K-S检验及改进证据理论相结合的复合故障分离方法,完善复合故障诊断新理论;最后,我们把提出的新理论、新方法应用于广东省石化装备故障诊断重点实验室的石化大型旋转机械故障诊断实验平台进行了实验验证,以及石化大型机组进行了现场验证,故障诊断准确率均达90%以上。项目研究成果已获得2017年度广东省科学技术奖二等奖和2018年中国石油与化工自动化行业科学技术奖一等奖。
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
DOI:--
发表时间:2019
期刊:机床与液压
影响因子:--
作者:覃爱淞;胡勤;张清华;吕运容;孙国玺
通讯作者:孙国玺
Compound-Fault Diagnosis of Rotating Machinery: A Fused Imbalance Learning Method
旋转机械复合故障诊断:一种融合不平衡学习方法
DOI:10.1109/tcst.2020.3015514
发表时间:2021-07
期刊:IEEE Transactions on Control Systems Technology
影响因子:4.8
作者:Jingfei Zhang;Qinghua Zhang;Xiao He;Guoxi Sun;Donghua Zhou
通讯作者:Donghua Zhou
DOI:10.16526/j.cnki.11-4762/tp.2019.05.013
发表时间:2019
期刊:计算机测量与控制
影响因子:--
作者:覃爱淞;吕运容;张清华;胡勤;孙国玺
通讯作者:孙国玺
DOI:--
发表时间:2017
期刊:广东石油化工学院学报
影响因子:--
作者:王子为;张清华;肖明;熊建斌
通讯作者:熊建斌
Concurrent Fault Diagnosis Based on Bayesian Discriminating Analysis and Time Series Analysis With Dimensionless Parameters
基于贝叶斯判别分析和无量纲参数时间序列分析的并行故障诊断
DOI:10.1109/jsen.2018.2885377
发表时间:2019-03-15
期刊:IEEE SENSORS JOURNAL
影响因子:4.3
作者:Qin, Aisong;Hu, Qin;Zhang, Qinghua
通讯作者:Zhang, Qinghua
旋转机械复合故障无量纲免疫检测器集成诊断方法研究
- 批准号:61174113
- 项目类别:面上项目
- 资助金额:63.0万元
- 批准年份:2011
- 负责人:张清华
- 依托单位:
国内基金
海外基金
