面向时变问题的变参收敛微分神经网络建模、分析与验证
结题报告
批准号:
61976096
项目类别:
面上项目
资助金额:
60.0 万元
负责人:
张智军
依托单位:
学科分类:
人工智能基础
结题年份:
2023
批准年份:
2019
项目状态:
已结题
项目参与者:
张智军
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
客服二维码
微信扫码咨询
中文摘要
面对存在着较大干扰复杂环境下的时变问题,比如非结构环境下的机器人运动规划问题,迫切需要研究出一种具备快速收敛能力、有效抵御外界干扰和降低模型误差的理论与方法。以往模型借助短时不变性假设或者采用恒定参数神经动力学方法进行求解,存在着计算效率低、计算误差大、抗干扰能力弱的缺陷。本项目主要内容是:首先,针对具体的时变问题,根据微分方程理论建立了基于变参神经动力学方法的数学模型,构造出变参神经网络求解时变问题的算法。其次,从理论上证明了所提出的变参收敛微分神经网络的全局收敛性,并给出具体激活函数条件下的超指数收敛率。然后,引入模型误差和外界干扰,分析了变参收敛微分神经网络的鲁棒性。本项目的创新点是根据系统时变特性,引入了时变设计参数,通过神经动力学设计方法,将网络误差上界从以往方法的“存在上界”水平提高到“误差接近为零”的水平。最后,将所提出的模型在实际的机器人系统上进行验证。
英文摘要
For solving time-varying problems in complex environments with large disturbances, such as robot motion planning problems in unstructured environments, it is urgent to develop a theory and method with rapid convergence ability and effective resistance to external disturbances and model errors. With the short-term invariant hypothesis or the constant parameter neural dynamics method, previous models had the disadvantage of low computational efficiency, large computational error and weak anti-interference. This project mainly includes three parts. First of all, for specific time-varying problems, by using the varying-parameter neural dynamics method, the mathematical model is established according to the differential equation theory, and the algorithm of solving time-varying problems by the varying-parameter neural network is constructed. Second, the global convergence of the varying-parameter convergent differential neural network is proved theoretically, and the super exponential convergence rate is given. Then, the model error and external interference are considered to analyze the robustness of the varying-parameter convergent differential neural network. The novelty of this project is that a time-varying parameter is designed according to the time-varying characteristics of the system, with the neural dynamic method, the error upper bound of the network is decreased from the "existing upper bound" level of previous methods to the "error nearly being zero" level. Finally, the proposed model is verified in real robot systems.
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
DOI:10.14107/j.cnki.kzgc.20210236
发表时间:2022
期刊:控制工程
影响因子:--
作者:陆荣秀;黄学文;杨辉;张智军
通讯作者:张智军
DOI:10.1109/tac.2021.3128470
发表时间:2022-11
期刊:IEEE Transactions on Automatic Control
影响因子:6.8
作者:Lunan Zheng;Zhijun Zhang
通讯作者:Lunan Zheng;Zhijun Zhang
DOI:10.1109/tnnls.2022.3201198
发表时间:2022-09-02
期刊:IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS
影响因子:10.4
作者:Zhang, Zhijun;Chen, Bozhao;Luo, Yamei
通讯作者:Luo, Yamei
DOI:10.1016/j.neucom.2022.03.026
发表时间:2022-03
期刊:Neurocomputing
影响因子:6
作者:Zhijun Zhang;Xianzhi Deng;Lunan Zheng
通讯作者:Zhijun Zhang;Xianzhi Deng;Lunan Zheng
DOI:10.1007/s11071-021-06445-9
发表时间:2021-05
期刊:Nonlinear Dynamics
影响因子:5.6
作者:Zhijun Zhang;Taobo Chen;Lunan Zheng
通讯作者:Zhijun Zhang;Taobo Chen;Lunan Zheng
多冗余度机器人的跨层协作神经动力学优化策略研究
  • 批准号:
    62373157
  • 项目类别:
    面上项目
  • 资助金额:
    50万元
  • 批准年份:
    2023
  • 负责人:
    张智军
  • 依托单位:
异构多类冗余度机器人手臂的一致化智能优化策略
  • 批准号:
    61603142
  • 项目类别:
    青年科学基金项目
  • 资助金额:
    20.0万元
  • 批准年份:
    2016
  • 负责人:
    张智军
  • 依托单位:
国内基金
海外基金