课题基金基金详情
高维SMT公式的求解与解空间大小计算
结题报告
批准号:
61972384
项目类别:
面上项目
资助金额:
60.0 万元
负责人:
马菲菲
学科分类:
计算机科学的基础理论
结题年份:
2023
批准年份:
2019
项目状态:
已结题
项目参与者:
马菲菲
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
客服二维码
微信扫码咨询
中文摘要
可满足性模理论(SMT)研究理论谓词的逻辑组合的可满足性,具有强大的表达能力。给定SMT公式,它是否有解?如果有解,解空间的大小如何?这两类问题有重要的科学意义和应用价值。目前SMT求解和解空间大小计算的主要工作都基于DPLL(T)框架。作为SMT求解的完备算法框架,DPLL(T)对于求解难判定理论上的高维SMT公式有很大瓶颈;在SMT解空间大小计算问题上,基于DPLL(T)的算法对维数增加更加敏感,并在解空间呈碎片化分布时效率低下。在本项目中,对于SMT求解问题,我们将结合局部搜索和DPLL(T)的思想,提出一种新的混合求解算法,并研究基于图神经网络的神经-符号求解算法;对于SMT解空间大小计算问题,将重点研究采用哈希函数的近似估算方法,使结果具备理论保证。通过本项目的研究,将显著提高可处理的SMT公式的维数,弥补现有DPLL(T)类算法的局限,并为深度学习与形式化方法的融合提供新思路。
英文摘要
Satisfiability Modulo Theories (SMT) checks the satisfiability of logical formulae with respect to combinations of theory predicates, and is very expressive. Given an SMT formula, is it satisfiable? If the answer is yes, then how large is its solution space? These two problems are not only of scientific significance, but also find important applications in practice. Currently, most works on SMT solving and solution space size computation are based on the DPLL(T) framework. As a complete algorithmic framework for SMT solving, DPLL(T) does not scale well for high dimensional SMT formulae involving theories which are hard to decide; As for computing the size of solution space, DPLL(T)-based algorithm is even more sensitive to the increase of dimensions, and is highly inefficient if the solution space is fragmentized. In this project, for SMT solving, we will develop a new hybrid framework incorporating the ideas of local search and DPLL(T), and investigate the neural-symbolic method based on graph neural networks; For solution space size computation, we will mainly investigate a hash-based approximation algorithm, so as to providing approximation results with theoretical guarantees. Through this project, SMT formulae with much higher dimensions can be processed, and the limitations of DPLL(T)-style algorithms will be complemented. Moreover, new insights can be provided for the merge of deep learning and formal methods.
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
DOI:--
发表时间:2022
期刊:Journal of the Operational Research Society
影响因子:--
作者:Yupeng Zhou;Minghao Liu;Feifei Ma;Na Luo;Minghao Yin
通讯作者:Minghao Yin
DOI:10.1613/jair.1.13382
发表时间:2022-07
期刊:J. Artif. Intell. Res.
影响因子:--
作者:Jian Gao;Yiqi Lv;Minghao Liu;Shaowei Cai;Feifei Ma
通讯作者:Jian Gao;Yiqi Lv;Minghao Liu;Shaowei Cai;Feifei Ma
DOI:10.1016/j.asoc.2020.106251
发表时间:2020-06
期刊:Appl. Soft Comput.
影响因子:--
作者:Yupeng Zhou;Mingjie Fan;Feifei Ma;Xin Xu;Minghao Yin
通讯作者:Yupeng Zhou;Mingjie Fan;Feifei Ma;Xin Xu;Minghao Yin
DOI:10.1007/s11704-023-2639-2
发表时间:2023-12
期刊:Frontiers of Computer Science
影响因子:4.2
作者:Yuting Yang;Pei Huang;Juan Cao;Jintao Li;Yun Lin;Feifei Ma
通讯作者:Yuting Yang;Pei Huang;Juan Cao;Jintao Li;Yun Lin;Feifei Ma
可满足性问题的扩展研究
  • 批准号:
    61100064
  • 项目类别:
    青年科学基金项目
  • 资助金额:
    23.0万元
  • 批准年份:
    2011
  • 负责人:
    马菲菲
  • 依托单位:
国内基金
海外基金