低维流形的几何与拓扑
批准号:
11431009
项目类别:
重点项目
资助金额:
280.0 万元
负责人:
方复全
依托单位:
学科分类:
A0111.代数拓扑与几何拓扑
结题年份:
2019
批准年份:
2014
项目状态:
已结题
项目参与者:
雷逢春、刘西民、吕志、赵学志、张振雷
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
微信扫码咨询
中文摘要
本项目将研究曲率与拓扑的关系,特别是曲率非负流形的几何拓扑。在低维拓扑方面,本项目将运用Seiberg-Witten理论, 特别是Bauer-Furuta不变量以及 Seiberg-Witten-Taubes 理论研究四维流形上的群作用, 讨论一些四维流形上的局部线性群作用的拓扑分类, 实现问题以及是否可以光滑化的问题. 我们还将研究Kähler曲面上的Ricci流,包括起点模型的分类,局部手术以及长期解的Cheeger-Gromov收敛. 在三维流形的拓扑的研究中, 我们将致力于Heegaard 分解的粘合映射的特征, 与相应的 Heegaard 分解以及对应的三维流形的拓扑性质和几何结构之间的联系. 我们以曲面和几何三维流形为主, 研究自同胚以及一般映射的不动点与周期点问题, 寻找描述周期点集不变量, 并分析这些不变量与空间拓扑之间的关系.
英文摘要
In this proposal we will study the interaction between curvature and topology, in particular the geometric topology of manifolds with nonnegative curvature. In low dimensional topology, we shall study the group actions on 4-dimensional manifolds, by using Seiberg-Witten theory, especially the Bauer-Furuta invariant and Seiberg-Witten-Taubes theory. We shall concern with the topological classification of locally linear group actions on certain $4$-dimensional manifolds. Corresponding realization and smoothlization are also addressed. We also study the geometry of Kähler surfaces by the method of Ricci flow, including the classification of singularity models, local surgeries and the long time limits in the Cheeger-Gromov topology. For 3-dimensional manifolds, we shall focus on the character of the gluing maps of a Heegaard splitting, and the relation with the topological and geometric structure of Heegaard splitting itself and the corresponding manifold. We shall study the fixed points and periodic points of homeomorphisms or general maps, mainly on surfaces and 3-dimensional manifolds with geometric structures. We shall ask for new invariants describing periodic point sets, and also the relations between these invariants and the topologies of underline spaces.
在黎曼几何方面, 建立曲率非负polar流形的刚性定理, 证明这类流形与对称空间理论之间的对应, 此对应将给出对称空间理论、Lie理论的黎曼几何刻画. 在四维流形方面, 运用Seiberg-Witten不变量论对四维流形上的群作用做进一步的深入研究, 包括:具有群作用的四维流形的Bauer-Furuta不变量的性质及计算, 四维流形上的局部线性群作用的拓扑分类问题、实现问题、光滑化问题. 在三维流形方面, 基于 Heegaard 分解, 讨论曲线复形, 寻找恰当的曲线复形的子复形的染色方式, 在 Heegaard 分解的距离加细问题进行研究. 三维流形Heegaard分解的相交核与该流形的同伦群之间的关系. 在等变拓扑方面, 将Toric 拓扑与构形空间相结合, 研究一些的非自由轨道构形空间的拓扑以及与Tutte多项式之间的本质关系, 关键点是刻画出它的伦型以及上同调环. 同时研究环面拓扑在三维及四维情形的特征, 并加以分类. 在低维流形不动点与周期点理论中, 不同周期的周期点之间的联系仅为集合之间简单包含的关系. 在适当的条件下, 给周期点集赋予更多的数学结构, 特别是代数结构. 在Ricci流研究方面, 主要研究了Kahler-Ricci流的长期解收敛性. 特别地, 对代数曲面情形, 完全解决了Kahler-Ricci流的收敛问题, 验证了该类流形上的解析极小模型纲领. 代数曲面上短期解奇异点的模型结构问题尚未解决, 需要进一步研究.
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
Almost Kenmotsu 3-manifolds satisfying some generalized nullity conditions
几乎 Kenmotsu 3 流形满足一些广义无效条件
DOI:10.2298/fil1801197w
发表时间:2018
期刊:Filomat
影响因子:0.8
作者:Wang Wenjie;Liu Ximin
通讯作者:Liu Ximin
DOI:10.1142/s021821651842004x
发表时间:2018
期刊:Journal of Knot Theory and Its Ramifications
影响因子:0.5
作者:Li Miaowang;Lei Fengchun;Li Fengling;Vesnin Andrei
通讯作者:Vesnin Andrei
DOI:10.4310/cag.2016.v24.n3.a3
发表时间:2016-07
期刊:Communications in Analysis and Geometry
影响因子:0.7
作者:Fang Fuquan;Grove Karsten;Thorbergsson Gudlaugur
通讯作者:Thorbergsson Gudlaugur
Unstabilized and uncritical self-amalgamation along essential subsurfaces
沿基本地下的不稳定且不加批判的自我融合
DOI:10.1007/s11425-017-9202-3
发表时间:2019-09
期刊:Science China Mathematics
影响因子:--
作者:Liang Liang;Li Fengling;Lei Fengchun
通讯作者:Lei Fengchun
A Schur-type theorem for CR-integrable almost Kenmotsu manifolds
CR可积近Kenmotsu流形的SCHUR型定理
DOI:10.1515/ms-2016-0217
发表时间:2016
期刊:Mathematica Slovaca
影响因子:1.6
作者:Wang Yaning;Liu Ximin
通讯作者:Liu Ximin
中国数学会2015学术年会暨中国数学会成立八十周年纪念会
- 批准号:11526016
- 项目类别:数学天元基金项目
- 资助金额:25.0万元
- 批准年份:2015
- 负责人:方复全
- 依托单位:
低维流形的几何与拓扑
- 批准号:10931005
- 项目类别:重点项目
- 资助金额:140.0万元
- 批准年份:2009
- 负责人:方复全
- 依托单位:
Seiberg-Witten理论与黎曼流形的几何拓扑
- 批准号:10671097
- 项目类别:面上项目
- 资助金额:18.0万元
- 批准年份:2006
- 负责人:方复全
- 依托单位:
国内基金
海外基金















{{item.name}}会员


