课题基金基金详情
Banach空间上非线性微分包含及其应用
结题报告
批准号:
10571150
项目类别:
面上项目
资助金额:
23.0 万元
负责人:
李刚
依托单位:
学科分类:
A0207.算子理论
结题年份:
2008
批准年份:
2005
项目状态:
已结题
项目参与者:
黄强联、庄亚栋、任一强、董琪翔、顾文颖、凡震彬、朱兰萍、朱涛、潘红燕
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
客服二维码
微信扫码咨询
中文摘要
Banach 空间中的(非线性)算子半群及(非线性)微分包含,是泛函分析中的非常活跃并且具有很强应用背景的方向之一,近年来已经被广泛应用于偏微分方程、Volterra方程、非线性发展方程、不变流问题、正解的存在性理论、控制论、最优化及从大型空间飞行器、机器人到细胞增生等诸多问题中,因而引起很多数学工作者的重视。我们主要研究Banach空间上非线性微分包含的解的存在性以及解的渐近行为以及在控制论与最优化等方面的应用。研究非线性算子半群的遍历理论和渐近行为,将其应用于非线性微分包含的解的性质的研究中。
英文摘要
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
Quasilinear nonlocal integrodifferential equations in Banach spaces.
Banach 空间中的拟线性非局部积分微分方程。
DOI:--
发表时间:2008
期刊:
影响因子:--
作者:
通讯作者:
DOI:--
发表时间:--
期刊:扬州大学学报,11(2008),no4, 25-28
影响因子:--
作者:
通讯作者:
DOI:--
发表时间:--
期刊:
影响因子:--
作者:
通讯作者:
DOI:--
发表时间:--
期刊:
影响因子:--
作者:
通讯作者:
DOI:--
发表时间:--
期刊:扬州大学学报,11(2008),no4, 7-11
影响因子:--
作者:
通讯作者:
Banach空间上非交换的非线性算子拓扑半群的遍历理论及其应用
  • 批准号:
    12371140
  • 项目类别:
    面上项目
  • 资助金额:
    43.5万元
  • 批准年份:
    2023
  • 负责人:
    李刚
  • 依托单位:
非线性微分包含的可控性问题及其应用
  • 批准号:
    11871064
  • 项目类别:
    面上项目
  • 资助金额:
    53.0万元
  • 批准年份:
    2018
  • 负责人:
    李刚
  • 依托单位:
基础数学研究生暑期学校
  • 批准号:
    11326010
  • 项目类别:
    数学天元基金项目
  • 资助金额:
    60.0万元
  • 批准年份:
    2013
  • 负责人:
    李刚
  • 依托单位:
抽象空间上非线性微分包含及其应用
  • 批准号:
    11271316
  • 项目类别:
    面上项目
  • 资助金额:
    60.0万元
  • 批准年份:
    2012
  • 负责人:
    李刚
  • 依托单位:
基础数学研究生暑期学校
  • 批准号:
    11226017
  • 项目类别:
    数学天元基金项目
  • 资助金额:
    50.0万元
  • 批准年份:
    2012
  • 负责人:
    李刚
  • 依托单位:
Banach空间上非线性算子半群与非线性微分包含及其应用
  • 批准号:
    10971182
  • 项目类别:
    面上项目
  • 资助金额:
    26.0万元
  • 批准年份:
    2009
  • 负责人:
    李刚
  • 依托单位:
非线性算子半群与马拿赫空间上微分方程及其应用
  • 批准号:
    10171087
  • 项目类别:
    面上项目
  • 资助金额:
    15.0万元
  • 批准年份:
    2001
  • 负责人:
    李刚
  • 依托单位:
非线性算子半群及其应用
  • 批准号:
    19701027
  • 项目类别:
    青年科学基金项目
  • 资助金额:
    4.0万元
  • 批准年份:
    1997
  • 负责人:
    李刚
  • 依托单位:
国内基金
海外基金