大脑影像智能分析的小样本学习理论与方法研究

批准号:
11971296
项目类别:
面上项目
资助金额:
50.0 万元
负责人:
应时辉
依托单位:
学科分类:
人工智能中的数学理论与方法
结题年份:
2023
批准年份:
2019
项目状态:
已结题
项目参与者:
应时辉
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
微信扫码咨询
中文摘要
近年来,医学人工智能领域发展方兴未艾,而影像技术为其提供了大量直观而可信的信息。然而,医学影像多存在多源异构、维度高、样本少、无结构等特性,造成分析结果鲁棒性欠佳。本项目拟以基于大脑影像的脑疾病早期诊断为问题驱动,通过对影像多尺度特征表达与融合和基于脑启发的小样本学习两大核心问题研究,为脑疾病早期诊断提供理论与方法论上的支撑。具体地,首先,将临床特征理解通过正则约束引入特征表达模型,从而提高模型的正则性和特征表达的鲁棒性。进一步,通过建立多尺度特征融合的有效机制解决大脑影像特征的多源异构性;其次,通过非线性度量学习建立基于数据驱动的数据分布最优描述,从而减少数据偏见和后续数据分类难度;再次,基于数据分布的最优描述,建立基于特征迁移学习和迁移过程学习的小样本学习机制,从而实现小样本数据的精确分类。最终,形成大脑影像智能分析的新理论和新方法,同时也为从小样本学习角度研究类脑智能提供有益探索。
英文摘要
In recent years, AI in medicine has a great development, while imaging techniques offer amounts of intuitive and believable information. However, medical images always have the property of multi-source heterogeneity, huge dimension, small sample and non-structure, and hence they lead to the lack of robustness for the medical image analysis. Therefore, in this project, we will study two essential questions about robust feature representation and small sample learning for image-based early diagnosis for brain disease. Concretely, we will first introduce the clinical knowledge as a regular constraint to the model to improve its regularity and robustness of feature representation. Further, by establishing the effective mechanism for multi-scale features fusion, we solve the multi-source heterogeneity of images. Second, by designing the nonlinear metric learning framework, we will establish the best description of the data distribution to reduce the bias of the data and difficulty of data classification. Thirdly, under the best description of data distribution, we will establish the effective mechanisms of feature transfer and transfer process learning to realize the accurate classification of small samples. Finally, we will form a novel theory and methodology for intelligent analysis of brain images, as well as offer a useful exploration for researches of brain-like intelligence from the viewpoint of small sample learning.
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
DOI:10.48550/arxiv.2303.07744
发表时间:2023-03
期刊:ArXiv
影响因子:--
作者:Lili Bao;Jiahao Lu;Shihui Ying;S. Sommer
通讯作者:Lili Bao;Jiahao Lu;Shihui Ying;S. Sommer
Long Time Series Deep Forecasting with Multiscale Feature Extraction and Seq2seq Attention Mechanism
DOI:10.1007/s11063-022-10774-0
发表时间:2022-03
期刊:Neural Processing Letters
影响因子:3.1
作者:Xin Wang;Zhiming Cai;Yixian Luo;Zhijie Wen;Shihui Ying
通讯作者:Xin Wang;Zhiming Cai;Yixian Luo;Zhijie Wen;Shihui Ying
DOI:10.3389/fnins.2023.1246769
发表时间:2023
期刊:FRONTIERS IN NEUROSCIENCE
影响因子:4.3
作者:Fang, Jinwu;Lv, Na;Li, Jia;Zhang, Hao;Wen, Jiayuan;Yang, Wan;Wu, Jingfei;Wen, Zhijie
通讯作者:Wen, Zhijie
DeLISA: Deep learning based iteration scheme approximation for solving PDEs
DeLISA:基于深度学习的迭代方案近似求解偏微分方程
DOI:10.1016/j.jcp.2021.110884
发表时间:2021
期刊:Journal of Computational Physics
影响因子:4.1
作者:Ying Li;Zuojia Zhou;Shihui Ying
通讯作者:Shihui Ying
DOI:10.1109/tmi.2022.3152157
发表时间:2022
期刊:IEEE Transactions on Medical Imaging
影响因子:--
作者:Xiangmin Han;Xiaoyan Fei;Jun Wang;Tao Zhou;Shihui Ying;Jun Shi;Dinggang Shen
通讯作者:Dinggang Shen
大脑影像标准化的优化模型与算法研究
- 批准号:11471208
- 项目类别:面上项目
- 资助金额:62.0万元
- 批准年份:2014
- 负责人:应时辉
- 依托单位:
数据集配准问题的Lie群方法研究及其应用
- 批准号:61005002
- 项目类别:青年科学基金项目
- 资助金额:20.0万元
- 批准年份:2010
- 负责人:应时辉
- 依托单位:
国内基金
海外基金
