低信噪比下的轻量级无线自适应传输

批准号:
61971452
项目类别:
面上项目
资助金额:
65.0 万元
负责人:
陈少平
依托单位:
学科分类:
通信理论与系统
结题年份:
2023
批准年份:
2019
项目状态:
已结题
项目参与者:
陈少平
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
微信扫码咨询
中文摘要
面向物联网低功耗、低计算与存储资源应用场景,开展低信噪比下的轻量级无线自适应传输理论与技术研究。(1)低信噪比下轻量级自适应调制:通过简单权重系数加权叠加,生成调制符号,实现简单,发送功率小,能耗低,BP解调计算量小;(2)极化码编译码联合设计:将BP译码迭代中子信道上的置信度演化特性作为信道选取的重要依据,构建的极化码与BP译码的匹配性好,误码率低;(3)机器学习辅助的极化码译码:通过提取深度网络中对译码性能占主导作用的深度网络参数,以很小的误码率性能损失为代价,显著降低深度学习的训练时间和译码算法的复杂度;(4)通过对接收数据和训练样本数据进行变换,提升机器学习辅助的通信处理算法对抗攻击的鲁棒性。通过深度神经网络的修剪与量化,得到的神经网络更适用于能耗和计算资源受限的物联网应用场景。研究成果将降低通信带宽、能耗和存储资源消耗,为低能耗物联网应用提供理论与技术支撑。
英文摘要
Facing the challenge of low power, low computation capability and limited memory available in IOT application, the project will seek to investigate the theory and technology of wireless adaptive transmission under very low signal-to-noise ratio (SNR). (1) A light weight adaptive modulation scheme under very low SNR is explored. It is implemented by weighted summation of transmitted bits with very simple coefficients and has the advantages of low complexity of modulation and demodulation, and low power consumption. (2) An innovative scheme of polar codes construction that has a high performance under BP decoding is addressed. By introducing the message evolution behavior in BP iterations of decoding as a metric to choose the subchannels for data transmission in code construction, the codes constructed match well with BP decoding and a low bit error rate of decoding is therefore achieved. (3) AI aided polar codes decoding and its low complexity implementation is explored. By taking the advantages of DNN for performance enhancement and by extracting the parameters that have a dominant role on the performance, a high performance of AI aided decoding may be achieved while maintaining a low complexity of training and implementation. (4) Techniques to enhance the robustness of AI aided algorithms for communications are explored. We seek to ensure the algorithms more robust to adversary attack by transforming the data used for training or received from wireless channels for data recovery. By pruning and quantizing the DNN, low complexity AI aided algorithms are explored that will find a wide application in wireless communications where limited bandwidth and limited memory are available and power consumption is constrained, e.g. IOT applications.
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
Wideband-Efficient SOI Uniform Subwavelength Grating Couplers by Effective-Index and Leakage-Factor Matching at Multiple Wavelengths
通过多波长有效折射率和泄漏系数匹配实现宽带高效 SOI 均匀亚波长光栅耦合器
DOI:10.1109/jphot.2023.3330163
发表时间:2023
期刊:IEEE Photonics Journal
影响因子:2.4
作者:Wanzhen Hu;Shiyuan Huang;Citrin Scott David;Hao Long;Chunyong Yang;Shaoping Chen;J. Hou
通讯作者:J. Hou
DOI:10.1080/00207217.2022.2148291
发表时间:2022-11
期刊:International Journal of Electronics
影响因子:1.3
作者:Dawei Li;Yang Zhou;Shaoping Chen;Yueyang Wu
通讯作者:Dawei Li;Yang Zhou;Shaoping Chen;Yueyang Wu
DOI:10.1007/s12200-022-00023-6
发表时间:2022-05-06
期刊:FRONTIERS OF OPTOELECTRONICS
影响因子:5.4
作者:Ma, Can;Hou, Jin;Yang, Chunyong;Shi, Ming;Chen, Shaoping
通讯作者:Chen, Shaoping
DOI:10.1109/jiot.2022.3183592
发表时间:2022-11
期刊:IEEE Internet of Things Journal
影响因子:10.6
作者:W. Rao;Shaoping Chen
通讯作者:W. Rao;Shaoping Chen
Deep Learning-Based AMP for Massive MIMO Detection
用于大规模 MIMO 检测的基于深度学习的 AMP
DOI:--
发表时间:--
期刊:China Communications
影响因子:4.1
作者:Yang Yang;Shaoping Chen;Xiqi Gao
通讯作者:Xiqi Gao
快变信道OFDM系统自适应编码调制理论与技术
- 批准号:61571467
- 项目类别:面上项目
- 资助金额:74.0万元
- 批准年份:2015
- 负责人:陈少平
- 依托单位:
快变信道中的OFDM认知无线电理论与技术
- 批准号:61179007
- 项目类别:面上项目
- 资助金额:65.0万元
- 批准年份:2011
- 负责人:陈少平
- 依托单位:
快变信道OFDM理论与技术研究
- 批准号:60772031
- 项目类别:面上项目
- 资助金额:25.0万元
- 批准年份:2007
- 负责人:陈少平
- 依托单位:
国内基金
海外基金
