大规模优化问题的 Krylov 子空间算法
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
微信扫码咨询
中文摘要
本项目主要研究大规模优化问题的 Krylov子空间算法。研究内容为:利用 Krylov子空间算法求解大规模二次约束二次规划(QCQP)问题、正交约束问题、变系数二次规划问题和特征值互补问题等优化中的经典问题。我们的主要创新点在于:1)块Krylov 子问题做为投影子空间,把原问题投影为小问题进行求解;2)利用近似积极集的想法。我们用一阶方法得到最优解积极集的近似估计,利用近似积极约束的法向量形成块Krylov子空间,这样计算效率更高;3)用线性正则性质进行算法的误差估计;4)Krylov子空间算法的缺点是正交性容易失去,造成算法精度下降。我们采用嵌套Krylov子空间的方法可以克服这个困难。目前我们已经有了一些前期工作,其中包括块Krylov子空间算法求解广义信赖域问题、CDT子问题。其中广义信赖域问题的块Krylov子空间算法,论文发表在SIOPT。
英文摘要
This project is devoted to Krylov subspace algorithms for large-scale optimization problems. The main research contents of this project is to use the Krylov subspace method to solve the important subjects in optimization such as large scale quadratically constrained quadratic programing problems (QCQP), the optimal problems with orthogonality constraints, varying coefficient matrix quadratic programming and cone eigenvalue complementarity problems, etc. Our main innovation lies in that: 1) Project the original problem to a small-scale problem. The projection subspace is a block Krylov subspace; 2) We use the idea of approximate active set to form the block Krylov subspace. The approximate active set of the optimal solution is computed by the first order method. Then we use the normal vectors of the approximate active constraints to form the block Krylov subspace. The advantage of this method is that we can form a small dimension Krylov subspace and therefore is more effective; 3) We use the linear regularity property to give error bounds of the Krylov subspace algorithm; 4) The drawback of the Krylov subspace algorithm is the lost of orthogonality, which results in the lower accuracy of the solution. We can use the nested Krylov subspace method to overcome this difficulty. Now we have already done some works, which include solving the extended trust region problem and the CDT subproblem by Krylov subspace lagorithms. The work of block Krylov subspace algorithm of solving the extended trust region subproblem is published in SIOPT.
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
DOI:https://doi.org/10.1007/s11590-022-01964-9
发表时间:2023
期刊:Optim. Lett.
影响因子:--
作者:Wei Hejie;Yang Wei Hong;Chai Yinsheng
通讯作者:Chai Yinsheng
DOI:https://doi.org/10.1007/s10898-023-01340-6
发表时间:2023
期刊:Journal of Global Optimization
影响因子:--
作者:Tan Lulin;Yang Wei Hong;Pan Jinbiao
通讯作者:Pan Jinbiao
DOI:https://doi.org/10.1137/21M1414814
发表时间:2023
期刊:SIAM J. Matrix Anal. Appl.
影响因子:--
作者:Shao Meiyue
通讯作者:Shao Meiyue
DOI:https://doi.org/10.1007/s11075-023-01550-9
发表时间:2023
期刊:Numerical Algorithms
影响因子:--
作者:Kressner Daniel;Ma Yuxin;Shao Meiyue
通讯作者:Shao Meiyue
DOI:https://doi.org/10.1007/s10915-023-02302-6
发表时间:2023
期刊:Journal of Scientific Computing
影响因子:--
作者:Wang Yunlong;Shen Chungen;Zhang Lei-Hong;Yang Wei Hong
通讯作者:Yang Wei Hong
正交约束优化问题的非光滑算法
- 批准号:11371102
- 项目类别:面上项目
- 资助金额:50.0万元
- 批准年份:2013
- 负责人:杨卫红
- 依托单位:
微分变分不等式的算法研究
- 批准号:10801040
- 项目类别:青年科学基金项目
- 资助金额:17.0万元
- 批准年份:2008
- 负责人:杨卫红
- 依托单位:
国内基金
海外基金















{{item.name}}会员


