Singular Integrals and Harmonic Analysis

奇异积分和调和分析

基本信息

  • 批准号:
    7802108
  • 负责人:
  • 金额:
    $ 1.17万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1978
  • 资助国家:
    美国
  • 起止时间:
    1978-06-01 至 1979-11-30
  • 项目状态:
    已结题

项目摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Gosselin其他文献

John Gosselin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Gosselin', 18)}}的其他基金

Harmonic Analysis and Singular Integrals
调和分析和奇异积分
  • 批准号:
    7507586
  • 财政年份:
    1975
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Standard Grant

相似国自然基金

英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
  • 批准号:
    12126512
  • 批准年份:
    2021
  • 资助金额:
    12.0 万元
  • 项目类别:
    数学天元基金项目

相似海外基金

Topics in Harmonic Analysis: Maximal Functions, Singular Integrals, and Multilinear Inequalities
调和分析主题:极大函数、奇异积分和多重线性不等式
  • 批准号:
    2154835
  • 财政年份:
    2022
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Standard Grant
A New Approach and Development to Singular Integrals in Noncommutative Harmonic Analysis - Fusion of Real Analysis and Representation Theory
非交换调和分析中奇异积分的新方法和发展——实分析与表示论的融合
  • 批准号:
    20K03638
  • 财政年份:
    2020
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Multiparameter Harmonic Analysis: Weighted Estimates for Singular Integrals
多参数谐波分析:奇异积分的加权估计
  • 批准号:
    DP160100153
  • 财政年份:
    2016
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Discovery Projects
New development in non-commutative harmonic analysis related to singular integrals - A fusion of representation theory and real analysis
奇异积分非交换调和分析新进展——表示论与实分析的融合
  • 批准号:
    24540191
  • 财政年份:
    2012
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Uniform rectifiability, Singular Integrals and Harmonic Measure
均匀可整流性、奇异积分和谐波测量
  • 批准号:
    1101244
  • 财政年份:
    2011
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Continuing Grant
Uniqueness and Convergence of Analytic Integrals in Harmonic and Spectral Analysis
调和与谱分析中解析积分的唯一性和收敛性
  • 批准号:
    0800300
  • 财政年份:
    2008
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Standard Grant
Multidimensional and Non-Homogeneous Harmonic Analysis: Bellman Functions, Pertubations of Normal Operators and Two Weight Estimates of Singular Integrals
多维非齐次调和分析:贝尔曼函数、正规算子的摄动和奇异积分的两个权重估计
  • 批准号:
    0200713
  • 财政年份:
    2002
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Continuing Grant
Collaborative Research: Multidimensional and Non-Homogeneous Harmonic Analysis: Bellman Functions, Perturbations of Normal Operators and Two Weight Estimates of Singular Integrals
合作研究:多维非齐次调和分析:贝尔曼函数、正规算子的扰动和奇异积分的两种权重估计
  • 批准号:
    0200584
  • 财政年份:
    2002
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Oscillatory Integrals in Harmonic Analysis and Their Applications
数学科学:调和分析中的振荡积分及其应用
  • 批准号:
    9401277
  • 财政年份:
    1994
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Quasiconformal Analysis and Harmonic Integrals with Applications to Nonlinear Elasticity
数学科学:拟共形分析和调和积分及其在非线性弹性中的应用
  • 批准号:
    9401104
  • 财政年份:
    1994
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了