Mathematical Sciences: Quasiconformal Analysis and Harmonic Integrals with Applications to Nonlinear Elasticity
数学科学:拟共形分析和调和积分及其在非线性弹性中的应用
基本信息
- 批准号:9401104
- 负责人:
- 金额:$ 13.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1994
- 资助国家:美国
- 起止时间:1994-05-01 至 1997-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9401104 Iwaniec The general area of mathematical research represented by this project is that of nonlinear partial differential equations. The main themes grew out of problems in quasiconformal and quasiregular mappings. The work expanded in recent years to include methods from harmonic analysis, calculus of variations, Sobolev spaces, differential geometry and topology. A major impetus to the current state of quasiconformal mapping was given by work of Sullivan and Donaldson on quasiconformal mappings of four-manifolds. In the course of this research, new differential equations were discovered which in many ways generalize the familiar Cauchy-Riemann system or the Beltrami equation. Basic questions to be studied include that of finding conditions thatensure weakly quasiregularity implies strong quasiregularity. Work will also be done investigating singularities of these mappings and the connection between dimension and removable sets of singularities. Additional efforts will be made to analyze A- harmonic mappings and singular integrals which carry certain algebraic structures, such as Grassmannn or Clifford algebras with a goal of determining dimension-free norms on the integrals when treated as transformations of function spaces. Partial differential equations form a basis for mathematical modeling of the physical world. The role of mathematical analysis is not so much to create the equations as it is to provide qualitative and quantitative information about the solutions. This may include answers to questions about uniqueness, smoothness and growth. In addition, analysis often develops methods for approximation of solutions and estimates onthe accuracy of these approximations. ***
[401104] Iwaniec这个项目所代表的数学研究的一般领域是非线性偏微分方程。主要的主题来自于拟共形映射和拟正则映射的问题。近年来,这项工作扩大到包括谐波分析、变分法、索博列夫空间、微分几何和拓扑学等方法。Sullivan和Donaldson关于四流形的拟共形映射的研究,对拟共形映射的发展起到了重要的推动作用。在这一研究过程中,人们发现了新的微分方程,它们在许多方面推广了我们所熟悉的柯西-黎曼系统或贝尔特拉米方程。要研究的基本问题包括寻找保证弱拟正则性蕴涵强拟正则性的条件。我们还将研究这些映射的奇异性,以及维度和可移动奇异集之间的联系。额外的努力将用于分析A-调和映射和奇异积分,它们带有某些代数结构,如grassmann或Clifford代数,其目标是确定作为函数空间变换的积分上的无维范数。偏微分方程是物理世界数学建模的基础。数学分析的作用与其说是创建方程,不如说是提供关于解的定性和定量信息。这可能包括回答关于独特性、平滑性和增长性的问题。此外,分析常常发展出解的近似方法和对这些近似精度的估计。***
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tadeusz Iwaniec其他文献
${\cal H}^1$ -estimates of Jacobians by subdeterminants
- DOI:
10.1007/s00208-002-0341-5 - 发表时间:
2002-10-01 - 期刊:
- 影响因子:1.400
- 作者:
Tadeusz Iwaniec;Jani Onninen - 通讯作者:
Jani Onninen
Div-curl fields of finite distortion
- DOI:
10.1016/s0764-4442(98)80160-2 - 发表时间:
1998-10-01 - 期刊:
- 影响因子:
- 作者:
Tadeusz Iwaniec;Carlo Sbordone - 通讯作者:
Carlo Sbordone
Dynamics of Quasiconformal Fields
- DOI:
10.1007/s10884-010-9203-0 - 发表时间:
2010-12-24 - 期刊:
- 影响因子:1.300
- 作者:
Tadeusz Iwaniec;Leonid V. Kovalev;Jani Onninen - 通讯作者:
Jani Onninen
On Minimisers of $$L^p$$ -mean Distortion
- DOI:
10.1007/s40315-014-0063-1 - 发表时间:
2014-04-01 - 期刊:
- 影响因子:0.700
- 作者:
Tadeusz Iwaniec;Gaven Martin;Jani Onninen - 通讯作者:
Jani Onninen
Tadeusz Iwaniec的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tadeusz Iwaniec', 18)}}的其他基金
Variational approach to Geometric Function Theorem, Nonlinear PDEs and Hyperelasticy
几何函数定理、非线性偏微分方程和超弹性的变分法
- 批准号:
1802107 - 财政年份:2018
- 资助金额:
$ 13.5万 - 项目类别:
Continuing Grant
Conference: Harmonic Analysis, Complex Analysis, Spectral Theory and All That
会议:调和分析、复分析、谱理论等等
- 批准号:
1600705 - 财政年份:2016
- 资助金额:
$ 13.5万 - 项目类别:
Standard Grant
Sobolev Mappings and Energy-Integrals in Mathematical Models of Nonlinear Elasticity
非线性弹性数学模型中的索博列夫映射和能量积分
- 批准号:
1301558 - 财政年份:2013
- 资助金额:
$ 13.5万 - 项目类别:
Continuing Grant
Extremal Problems in Quasiconformal Geometry and Nonlinear PDEs, an Invitation to n- Harmonic Hyperelasticity
拟共形几何和非线性偏微分方程中的极值问题,n 调和超弹性的邀请
- 批准号:
0800416 - 财政年份:2008
- 资助金额:
$ 13.5万 - 项目类别:
Continuing Grant
Geometric Analysis of Deformations of Finite Distortiion via Nonlinear PDEs and Null Lagrangians
通过非线性偏微分方程和零拉格朗日量对有限畸变变形进行几何分析
- 批准号:
0301582 - 财政年份:2003
- 资助金额:
$ 13.5万 - 项目类别:
Continuing Grant
Collaborative Research: FRG: Geometric Function Theory: From Complex Functions to Quasiconformal Geometry and Nonlinear Analysis
合作研究:FRG:几何函数理论:从复杂函数到拟共形几何和非线性分析
- 批准号:
0244297 - 财政年份:2003
- 资助金额:
$ 13.5万 - 项目类别:
Standard Grant
Foundation of the Geometric Function Theory in R^n: The Governing differential Forms, Variational Integrals and Nonlinear Elasticity
R^n 中的几何函数理论基础:控制微分形式、变分积分和非线性弹性
- 批准号:
0070807 - 财政年份:2000
- 资助金额:
$ 13.5万 - 项目类别:
Continuing Grant
Quasiconformal Mappings, Harmonic Analysis and Nonlinear Elasticity from the Prospective of PDEs
偏微分方程视角下的拟共形映射、调和分析和非线性弹性
- 批准号:
9706611 - 财政年份:1997
- 资助金额:
$ 13.5万 - 项目类别:
Continuing Grant
Mathematical Sciences: Regularity Problems in Nonlinear Potential Theory and Quasiregular Mappings
数学科学:非线性势论和拟正则映射中的正则问题
- 批准号:
9208296 - 财政年份:1992
- 资助金额:
$ 13.5万 - 项目类别:
Standard Grant
Mathematical Sciences: Regularity Problems for Variational Integrals and Quasiregular Mappings
数学科学:变分积分和拟正则映射的正则问题
- 批准号:
9007946 - 财政年份:1990
- 资助金额:
$ 13.5万 - 项目类别:
Standard Grant
相似国自然基金
Handbook of the Mathematics of the Arts and Sciences的中文翻译
- 批准号:12226504
- 批准年份:2022
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
SCIENCE CHINA: Earth Sciences
- 批准号:41224003
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21224005
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Information Sciences
- 批准号:61224002
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51224001
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21024806
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
- 批准号:81024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
- 批准号:41024801
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
Mathematical Sciences: Dynamics, Hyperbolic Geometry and Quasiconformal Maps
数学科学:动力学、双曲几何和拟共形映射
- 批准号:
9996234 - 财政年份:1998
- 资助金额:
$ 13.5万 - 项目类别:
Continuing Grant
Mathematical Sciences: Quasiconformal Maps and Nonsmooth Analysis
数学科学:拟共形映射和非光滑分析
- 批准号:
9622844 - 财政年份:1996
- 资助金额:
$ 13.5万 - 项目类别:
Continuing Grant
Mathematical Sciences: Discrete Groups and Quasiconformal Mappings
数学科学:离散群和拟共形映射
- 批准号:
9622808 - 财政年份:1996
- 资助金额:
$ 13.5万 - 项目类别:
Standard Grant
Mathematical Sciences Research Conference: Quasiconformal Mappings and Analysis; August 18-19, 1995; Ann Arbor, Michigan
数学科学研究会议:拟共形映射与分析;
- 批准号:
9424350 - 财政年份:1995
- 资助金额:
$ 13.5万 - 项目类别:
Standard Grant
Mathematical Sciences: Quasiconformal Analysis: Extensions and Applications
数学科学:拟共形分析:扩展和应用
- 批准号:
9501561 - 财政年份:1995
- 资助金额:
$ 13.5万 - 项目类别:
Standard Grant
Mathematical Sciences: Discrete Groups, Quasiconformal Mappings, and Function Theoretic Properties
数学科学:离散群、拟共形映射和函数理论性质
- 批准号:
9305852 - 财政年份:1993
- 资助金额:
$ 13.5万 - 项目类别:
Continuing Grant
Mathematical Sciences: Dynamics, Hyperbolic Geometry and Quasiconformal Maps
数学科学:动力学、双曲几何和拟共形映射
- 批准号:
9301502 - 财政年份:1993
- 资助金额:
$ 13.5万 - 项目类别:
Continuing Grant
Mathematical Sciences: Quasiconformal and Quasiregular Mappings and Elliptic Partial Differential Equations
数学科学:拟共形和拟正则映射以及椭圆偏微分方程
- 批准号:
9305742 - 财政年份:1993
- 资助金额:
$ 13.5万 - 项目类别:
Standard Grant
Mathematical Sciences: Chord-arc Domains and Quasiconformal Maps
数学科学:弦弧域和拟共形映射
- 批准号:
9305792 - 财政年份:1993
- 资助金额:
$ 13.5万 - 项目类别:
Standard Grant
Mathematical Sciences: Research in Circle Packings, Quasiconformal Geometry and Complex Function Theory
数学科学:圆堆积、拟共形几何和复函数理论的研究
- 批准号:
9396227 - 财政年份:1993
- 资助金额:
$ 13.5万 - 项目类别:
Standard Grant