EIA: Maximum Likelihood Based Angle-of-Arrival Estiamtion ina Diffuse Multipath Environenmt

EIA:弥散多径环境中基于最大似然的到达角估计

基本信息

  • 批准号:
    8707681
  • 负责人:
  • 金额:
    $ 6万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1987
  • 资助国家:
    美国
  • 起止时间:
    1987-08-01 至 1990-01-31
  • 项目状态:
    已结题

项目摘要

This proposal is for an Engineering Initiation Award that outlines an investigation into the use of the maximum likelihood (ML) estimation procedure for determining the directions of signals impinging on an array of sensors in a dispersive medium. The particular application of interest deals with the tracking of a radar target in the low-angle regime when a diffuse multipath component is present. The use of the ML estimator is targeted in light of its ability to contend with a small number of array date snapshots and because of recent algorithmic developments that significantly reduce the associated computational burden. The goal of this work is to define and develop an ML-based estimation procedure suitable for continuous sources as well as for point sources. Present ML-based methods assume the sources of emission to be point-like in nature and are only strictly applicable in a specular multipath environment. If successful, the resulting ML algorithm will be generalized for use in more complex diffuse signal source scenarios such as those encountered in tomography, radio astronomy, and sonar.
该提案是为了获得工程启动奖,概述了对使用最大似然 (ML) 估计程序来确定撞击色散介质中传感器阵列的信号方向的调查。 感兴趣的特定应用涉及当存在扩散多径分量时在低角度范围内跟踪雷达目标。 ML 估计器的使用是有针对性的,因为它能够应对少量数组日期快照,而且最近的算法开发可以显着减少相关的计算负担。 这项工作的目标是定义和开发适用于连续源和点源的基于机器学习的估计程序。 目前基于机器学习的方法假设发射源本质上是点状的,并且仅严格适用于镜面多路径环境。 如果成功,所得的机器学习算法将被推广用于更复杂的漫射信号源场景,例如断层扫描、射电天文学和声纳中遇到的场景。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Zoltowski其他文献

Michael Zoltowski的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Zoltowski', 18)}}的其他基金

CIF: Small: Collaborative Research: Signal Design for Low-Complexity Active Sensing
CIF:小型:协作研究:低复杂性主动传感的信号设计
  • 批准号:
    0914915
  • 财政年份:
    2009
  • 资助金额:
    $ 6万
  • 项目类别:
    Standard Grant
Future Directions in Signal Processing, Communications, Information Theory, and Physical Layer Networking
信号处理、通信、信息论和物理层网络的未来方向
  • 批准号:
    0957440
  • 财政年份:
    2009
  • 资助金额:
    $ 6万
  • 项目类别:
    Standard Grant
Waveform Diversity for Wireless Communications with Joint Transceiver Multipath Exploitation and Interference Avoidance
具有联合收发器多路径利用和干扰避免的无线通信波形分集
  • 批准号:
    0515032
  • 财政年份:
    2005
  • 资助金额:
    $ 6万
  • 项目类别:
    Standard Grant
Reduced-Dimension Decision Feedback Equalizers for High-Speed Wireless Digital Communications
用于高速无线数字通信的降维判决反馈均衡器
  • 批准号:
    0118842
  • 财政年份:
    2001
  • 资助金额:
    $ 6万
  • 项目类别:
    Continuing Grant
Space-Time Processing for Digital Comm: Nonparametric Channel ID & Interference Cancellation & Multichannel Equalizer Design Based on Linear Matrix Inequalities
数字通信的时空处理:非参数通道 ID
  • 批准号:
    9708309
  • 财政年份:
    1997
  • 资助金额:
    $ 6万
  • 项目类别:
    Continuing Grant
Closed-Form Angle Estimation with Circular Arrays/Apertures for Mobile/Cellular Communications and Surveillance Radar
用于移动/蜂窝通信和监视雷达的圆形阵列/孔径的闭式角度估计
  • 批准号:
    9320890
  • 财政年份:
    1994
  • 资助金额:
    $ 6万
  • 项目类别:
    Standard Grant

相似海外基金

Laparoscopic surgical dynamic navigation using maximum likelihood estimation of organ deformations
使用器官变形最大似然估计的腹腔镜手术动态导航
  • 批准号:
    23H00480
  • 财政年份:
    2023
  • 资助金额:
    $ 6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
CIF: Small: Low Complexity Maximum-Likelihood Decoding Through Serial List Decoding
CIF:小:通过串行列表解码进行低复杂度最大似然解码
  • 批准号:
    2008918
  • 财政年份:
    2020
  • 资助金额:
    $ 6万
  • 项目类别:
    Standard Grant
Efficient maximum likelihood phylogeny estimation of Mycobacterium tuberculosis based on tandem repeat data
基于串联重复数据的结核分枝杆菌的有效最大似然系统发育估计
  • 批准号:
    553295-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 6万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
The Multi-Mission Maximum Likelihood Framework (3ML): a Tool to Explore the High-Energy Universe in the Era of Multi Messenger Astrophysics
多任务最大似然框架(3ML):多信使天体物理时代探索高能宇宙的工具
  • 批准号:
    2011759
  • 财政年份:
    2020
  • 资助金额:
    $ 6万
  • 项目类别:
    Continuing Grant
Targeted Maximum Likelihood Estimation Method and Administrative Data
目标最大似然估计方法和管理数据
  • 批准号:
    510563-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 6万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Developing the maximum likelihood estimation for component analysis: A state space approach
开发成分分析的最大似然估计:状态空间方法
  • 批准号:
    RGPIN-2016-04779
  • 财政年份:
    2017
  • 资助金额:
    $ 6万
  • 项目类别:
    Discovery Grants Program - Individual
Maximum smoothed likelihood estimation in linear regression model
线性回归模型中的最大平滑似然估计
  • 批准号:
    509014-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 6万
  • 项目类别:
    University Undergraduate Student Research Awards
Inferring maximum likelihood phylogenies from MIRU-VNTR data
从 MIRU-VNTR 数据推断最大似然系统发育
  • 批准号:
    511877-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 6万
  • 项目类别:
    University Undergraduate Student Research Awards
Targeted Maximum Likelihood Estimation Method and Administrative Data
目标最大似然估计方法和管理数据
  • 批准号:
    373042
  • 财政年份:
    2016
  • 资助金额:
    $ 6万
  • 项目类别:
    Studentship Programs
Throughput Performance of Non-Orthogonal Multiple Access with Joint Maximum Likelihood Detection in Heterogeneous Network
异构网络联合最大似然检测非正交多址吞吐量性能
  • 批准号:
    16K06366
  • 财政年份:
    2016
  • 资助金额:
    $ 6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了