Mathematical Treatment of Evolutionary Ecology
进化生态学的数学处理
基本信息
- 批准号:8801968
- 负责人:
- 金额:$ 1.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1988
- 资助国家:美国
- 起止时间:1988-07-15 至 1989-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project is concerned with the study of the effects of natural selection and diffusion on a population consisting of a single evolving species with a genetic system of one locus with two alleles. The model is an example from evolutionary ecology, which is a fusion of population ecology with population genetics. The model is more realistic than those encountered in the classical theory of population genetics because it allows density dependent selection. It is assumed that increase in population size decreases the fitness of the individuals in the population. A future goal will be to study the case of several interacting species, or coevolutionary theory with diffusion. Mathematically, this is a system of reaction-diffusion equations. It is necessary to prove the existence of travelling waves connecting two rest points lying on different invariant manifolds. Each of these manifolds corresponds to the absence of one allele. The stability of these waves will be examined. The results will give a more complete picture of what has been shown by the principal investigator on the asymptotic behavior of solutions to the reaction-diffusion system. It will give insight into the ways to handle systems where the maximum principle is hard to apply.
本项目研究自然选择和扩散对由单一进化物种组成的种群的影响,该种群具有一个位点和两个等位基因的遗传系统。该模型是进化生态学的一个例子,它是种群生态学与种群遗传学的融合。该模型比经典种群遗传学理论中遇到的模型更现实,因为它允许密度依赖选择。假设种群规模的增加会降低种群中个体的适合度。未来的目标将是研究几个相互作用的物种的情况,或共同进化理论与扩散。从数学上讲,这是一个反应扩散方程组。有必要证明在不同不变流形上连接两个静止点的行波的存在性。每一个流形对应一个等位基因的缺失。这些波的稳定性将被检验。这些结果将更全面地说明主要研究者关于反应-扩散系统解的渐近行为的结论。它将使我们深入了解如何处理难以应用最大原则的系统。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Roger Lui其他文献
A reduction method for multiple time scale stochastic reaction networks with non-unique equilibrium probability
- DOI:
10.1007/s10910-009-9598-1 - 发表时间:
2009-09-16 - 期刊:
- 影响因子:2.000
- 作者:
Chang Hyeong Lee;Roger Lui - 通讯作者:
Roger Lui
Convergence to constant equilibrium for a density-dependent selection model with diffusion
- DOI:
10.1007/bf00276061 - 发表时间:
1988-10-01 - 期刊:
- 影响因子:2.300
- 作者:
Roger Lui - 通讯作者:
Roger Lui
One-dimensional viscoelastic cell motility models
- DOI:
10.1016/j.mbs.2010.10.006 - 发表时间:
2011-01-01 - 期刊:
- 影响因子:
- 作者:
Sergey Zheltukhin;Roger Lui - 通讯作者:
Roger Lui
Advance of advantageous genes for a multiple-allele population genetics model
- DOI:
10.1016/j.jtbi.2012.09.005 - 发表时间:
2012-12-21 - 期刊:
- 影响因子:
- 作者:
Linlin Su;Roger Lui - 通讯作者:
Roger Lui
Existence of global solutions for the Shiesada-Kawasaki-Teramoto model with strongly coupled cross-diffusion
强耦合交叉扩散的 Shiesada-Kawasaki-Teramoto 模型全局解的存在性
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
Y.S.Choi;Roger Lui;Yoshio Yamada - 通讯作者:
Yoshio Yamada
Roger Lui的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Roger Lui', 18)}}的其他基金
Mathematical Sciences: Mathematical Problems in EvolutionaryEcology and Electrochemistry
数学科学:进化生态学和电化学中的数学问题
- 批准号:
9202341 - 财政年份:1992
- 资助金额:
$ 1.5万 - 项目类别:
Continuing Grant
Mathematical Sciences: Reaction-Diffusion Equations and Evolutionary Ecology
数学科学:反应扩散方程和进化生态学
- 批准号:
8920597 - 财政年份:1990
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant
Mathematical Sciences: Asymptotic Behavior of Biological Models with Non-overlapping Generations
数学科学:具有非重叠代的生物模型的渐近行为
- 批准号:
8601585 - 财政年份:1986
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant
相似海外基金
Development of Teat-Dipping Nanoemulsion Loaded with Curcumin for Prevention of Intramammary Infection and Treatment of Mastitis as an Immune Stimulant
开发含有姜黄素的乳头浸渍纳米乳作为免疫兴奋剂预防乳房内感染和治疗乳腺炎
- 批准号:
24K09263 - 财政年份:2024
- 资助金额:
$ 1.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
SBIR Phase II: A mesh-free, sling-free, minimally invasive treatment for stress urinary incontinence in women
SBIR II 期:无网、无吊带的微创治疗女性压力性尿失禁
- 批准号:
2233106 - 财政年份:2024
- 资助金额:
$ 1.5万 - 项目类别:
Cooperative Agreement
Catalyzing Sustainable Air Travel: Unveiling Consumer Willingness to Pay for Sustainable Aviation Fuel through Information Treatment in Choice Experiment and Cross-Country Analysis
促进可持续航空旅行:通过选择实验和跨国分析中的信息处理揭示消费者支付可持续航空燃油的意愿
- 批准号:
24K16365 - 财政年份:2024
- 资助金额:
$ 1.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The Role of CA8 in Hepatic Glucose Production and Its Prospect as Type 2 Diabetes Mellitus Treatment
CA8在肝葡萄糖生成中的作用及其治疗2型糖尿病的前景
- 批准号:
24K19287 - 财政年份:2024
- 资助金额:
$ 1.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Machine Learning for Computational Water Treatment
用于计算水处理的机器学习
- 批准号:
EP/X033244/1 - 财政年份:2024
- 资助金额:
$ 1.5万 - 项目类别:
Research Grant
BOOSTING SEMICONDUCTORS: FOR PHOTOCATALYTIC WATER TREATMENT (BO-SE)
升压半导体:用于光催化水处理 (BO-SE)
- 批准号:
EP/Y003063/1 - 财政年份:2024
- 资助金额:
$ 1.5万 - 项目类别:
Research Grant
An innovative urinary drainage system that could reduce NHS CAUTI treatment costs by 10% and increase quality-of-life for men suffering from chronic incontinence
%20创新%20泌尿%20引流%20系统%20%20可以%20减少%20NHS%20CAUTI%20治疗%20成本%20by%2010%%20和%20增加%20生活质量%20为%20男性%20痛苦%20来自%20慢性%20失禁
- 批准号:
10094849 - 财政年份:2024
- 资助金额:
$ 1.5万 - 项目类别:
Collaborative R&D
SpyTCR-RBNP - Engineering a highly targeted and biocompatible drug delivery system for solid cancer treatment
SpyTCR-RBNP - 设计用于实体癌症治疗的高度针对性和生物相容性的药物输送系统
- 批准号:
10095606 - 财政年份:2024
- 资助金额:
$ 1.5万 - 项目类别:
Collaborative R&D
Validating FilaChar Use in Wastewater Treatment
验证 FilaChar 在废水处理中的使用
- 批准号:
10106623 - 财政年份:2024
- 资助金额:
$ 1.5万 - 项目类别:
Launchpad
Repurposing flumazenil for pre-hospital intramuscular treatment of coma due to recreational drug overdose
重新利用氟马西尼用于院前肌肉注射治疗因娱乐性药物过量而导致的昏迷
- 批准号:
MR/X030237/1 - 财政年份:2024
- 资助金额:
$ 1.5万 - 项目类别:
Research Grant