Center for Discrete Mathematics and Theoretical Computer Science

离散数学与理论计算机科学中心

基本信息

  • 批准号:
    8809648
  • 负责人:
  • 金额:
    $ 588.46万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Cooperative Agreement
  • 财政年份:
    1989
  • 资助国家:
    美国
  • 起止时间:
    1989-02-01 至 1994-10-31
  • 项目状态:
    已结题

项目摘要

This proposal from Rutgers University, in cooperation with Princeton University, AT&T Bell Laboratories (Bell Labs), and Bell Communications Research (Bellcore), requests funds to establish a Science and Technology Center for Discrete Mathematics and Theoretical Computer Science. The Director of the Center will be Professor Daniel Gorenstein of Rutgers University. The Center in Discrete Mathematics and Theoretical Computer Science will strengthen the development of these two overlapping areas by focussing research activity in a continuing series of year-long research programs, workshops and conferences. Approximately seventy researchers from the four collaborating institutions provide the background coherence and direction for this activity. The core of the research activity will be carried out by a vigorous program of visitors (both senior and junior) from other institutions (academic, industrial, government laboratory). Postdoctoral fellows and graduate students will be affiliated with the Center for varying lengths of time. Each year the Center will designate specific areas for special attention, inviting leading experts in the designated fields to organize a research program in those areas of concentration. These areas will be chosen to take advantage of the expertise of the participating personnel from the collaborating institutions while addressing questions of demonstrable interest to researchers in both the discrete mathematics and theoretical computer science communities. Within these general guidelines, there are several avenues of potential emphasis that involve both serious theoretical inquiry and relevant application. For example, our modern "information society" depends on clear, efficiently designed and reliable telecommunications and communications systems. These are easily described by network theory and can be modeled using linear programming techniques. Transportation problems require similar techniques; and optimization and linear programming, possibly enhanced by parallel computations, are critical in VLSI design and manufacture. Discrete and computational geometry are foundational disciplines for computer graphics and robotics. As the geometries required for the applications become increasingly more complex, research in computational geometry becomes ever more important. Yet there are fundamental questions in discrete and computational geometry that must be addressed before the applications can be realized.
这项提案由罗格斯大学与普林斯顿大学、AT&T 贝尔实验室(Bell Labs)和贝尔通信研究中心(Bellcore)合作提出,请求资金建立离散数学和理论计算机科学科学技术中心。 该中心主任将由罗格斯大学的 Daniel Gorenstein 教授担任。 离散数学和理论计算机科学中心将通过将研究活动集中在一系列持续一年的研究计划、研讨会和会议上,加强这两个重叠领域的发展。 来自四个合作机构的大约七十名研究人员为这项活动提供了背景一致性和方向。 研究活动的核心将由来自其他机构(学术、工业、政府实验室)的参观者(高级和初级)进行。 博士后研究员和研究生将在该中心工作不同时间。 中心每年都会指定特定的重点领域,邀请指定领域的顶尖专家在这些重点领域组织研究项目。 选择这些领域是为了利用合作机构参与人员的专业知识,同时解决离散数学和理论计算机科学界研究人员明显感兴趣的问题。 在这些一般准则中,有几种潜在的重点途径,涉及严肃的理论探究和相关应用。 例如,我们的现代“信息社会”依赖于清晰、设计高效且可靠的电信和通信系统。 这些很容易用网络理论来描述,并且可以使用线性规划技术来建模。 运输问题需要类似的技术;优化和线性编程(可能通过并行计算得到增强)在 VLSI 设计和制造中至关重要。 离散几何和计算几何是计算机图形学和机器人学的基础学科。 随着应用所需的几何形状变得越来越复杂,计算几何的研究变得越来越重要。 然而,在实现应用之前,必须解决离散几何和计算几何中的一些基本问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Diane Souvaine其他文献

Efficient Many-To-Many Point Matching in One Dimension
  • DOI:
    10.1007/s00373-007-0714-3
  • 发表时间:
    2007-06-01
  • 期刊:
  • 影响因子:
    0.600
  • 作者:
    Justin Colannino;Mirela Damian;Ferran Hurtado;Stefan Langerman;Henk Meijer;Suneeta Ramaswami;Diane Souvaine;Godfried Toussaint
  • 通讯作者:
    Godfried Toussaint

Diane Souvaine的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Diane Souvaine', 18)}}的其他基金

AF: Small: Collaborative Research: Reconfiguration Algorithms
AF:小型:协作研究:重构算法
  • 批准号:
    1422311
  • 财政年份:
    2014
  • 资助金额:
    $ 588.46万
  • 项目类别:
    Standard Grant
Geometric Data Structures
几何数据结构
  • 批准号:
    0830734
  • 财政年份:
    2009
  • 资助金额:
    $ 588.46万
  • 项目类别:
    Standard Grant
Computer Science, Engineering and Mathematics Scholarship Program
计算机科学、工程和数学奖学金计划
  • 批准号:
    0631054
  • 财政年份:
    2006
  • 资助金额:
    $ 588.46万
  • 项目类别:
    Standard Grant
Impact on Computational Geometry on Depth-Based Statistics
计算几何对基于深度的统计的影响
  • 批准号:
    0431027
  • 财政年份:
    2004
  • 资助金额:
    $ 588.46万
  • 项目类别:
    Standard Grant
Tufts-CSEMS Scholars Program
塔夫茨大学-CSEMS学者计划
  • 批准号:
    0220651
  • 财政年份:
    2002
  • 资助金额:
    $ 588.46万
  • 项目类别:
    Standard Grant
POWRE: Geometric Computation and Applications
POWRE:几何计算与应用
  • 批准号:
    9996237
  • 财政年份:
    1999
  • 资助金额:
    $ 588.46万
  • 项目类别:
    Standard Grant
POWRE: Geometric Computation and Applications
POWRE:几何计算与应用
  • 批准号:
    9753064
  • 财政年份:
    1998
  • 资助金额:
    $ 588.46万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Improved Algorithms for Functional Analysis of Genomic Information
数学科学:基因组信息功能分析的改进算法
  • 批准号:
    9407039
  • 财政年份:
    1994
  • 资助金额:
    $ 588.46万
  • 项目类别:
    Fellowship Award
Applications of String Matching to Molecular Biology
字符串匹配在分子生物学中的应用
  • 批准号:
    9207931
  • 财政年份:
    1992
  • 资助金额:
    $ 588.46万
  • 项目类别:
    Continuing Grant
Algorithms for Geometric Problems of Practical Interest
具有实际意义的几何问题的算法
  • 批准号:
    9104732
  • 财政年份:
    1991
  • 资助金额:
    $ 588.46万
  • 项目类别:
    Standard Grant

相似海外基金

REU Site: Research Experiences for Undergraduates in Algebra and Discrete Mathematics at Auburn University
REU 网站:奥本大学代数和离散数学本科生的研究经验
  • 批准号:
    2349684
  • 财政年份:
    2024
  • 资助金额:
    $ 588.46万
  • 项目类别:
    Continuing Grant
REU Site: Research Experiences for Undergraduates in Discrete and Applied Mathematics
REU 网站:离散与应用数学本科生的研究经验
  • 批准号:
    2244461
  • 财政年份:
    2023
  • 资助金额:
    $ 588.46万
  • 项目类别:
    Continuing Grant
Innovating the foundation of Ising spin glass theory by an approach from discrete mathematics
通过离散数学方法创新伊辛自旋玻璃理论的基础
  • 批准号:
    23K03192
  • 财政年份:
    2023
  • 资助金额:
    $ 588.46万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Matrix Theory with Applications to Positivity and Discrete Mathematics
矩阵理论及其在正性和离散数学中的应用
  • 批准号:
    RGPIN-2019-03934
  • 财政年份:
    2022
  • 资助金额:
    $ 588.46万
  • 项目类别:
    Discovery Grants Program - Individual
REU Site: Queens Experiences in Discrete Mathematics
REU 网站:皇后区离散数学经验
  • 批准号:
    2150251
  • 财政年份:
    2022
  • 资助金额:
    $ 588.46万
  • 项目类别:
    Standard Grant
Task-Specific Languages as Scaffolding for Programming in Discrete Mathematics Classes
任务特定语言作为离散数学课程编程的脚手架
  • 批准号:
    2141819
  • 财政年份:
    2022
  • 资助金额:
    $ 588.46万
  • 项目类别:
    Standard Grant
Mathematics and applications of discrete Sobolev inequalities
离散索博列夫不等式的数学和应用
  • 批准号:
    22K03360
  • 财政年份:
    2022
  • 资助金额:
    $ 588.46万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
REU Site: Research Challenges of Computational Methods in Discrete Mathematics
REU 网站:离散数学计算方法的研究挑战
  • 批准号:
    2150299
  • 财政年份:
    2022
  • 资助金额:
    $ 588.46万
  • 项目类别:
    Standard Grant
Understanding Geographic Mapping Applications through Map Markup Language (MapML) and Discrete Mathematics: A Workshop
通过地图标记语言 (MapML) 和离散数学了解地理绘图应用程序:研讨会
  • 批准号:
    576431-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 588.46万
  • 项目类别:
    PromoScience Supplement for Science Literacy Week
Matrix Theory with Applications to Positivity and Discrete Mathematics
矩阵理论及其在正性和离散数学中的应用
  • 批准号:
    RGPIN-2019-03934
  • 财政年份:
    2021
  • 资助金额:
    $ 588.46万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了