Stochastic Convexity in Queueing Networks and Its Application
排队网络中的随机凸性及其应用
基本信息
- 批准号:8811234
- 负责人:
- 金额:$ 14.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1988
- 资助国家:美国
- 起止时间:1988-08-15 至 1992-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This proposal is jointly submitted by J.G. Shanthikumar of the University of California, Berkeley, and by D.D. Yao of Harvard University. The focus of the proposed research project is on studying convexity properties in queueing networks. Such properties are often indispensable in the optimal design and control of queueing networks, which for the last three decades have been major tools in studying complex stochastic systems such as computer systems, communication networks, data-base systems, and manufacturing systems. The PI's propose a new concept of stochastic convexity, and highlight its applications in queueing network models of manufacturing systems. This new concept captures the second-order (e.g., convexity or concavity) behavior of the stochastic processes in queueing networks with respect to temporal and other parametric changes. The queueing network models that they focus on are major departures from classical models; for instance, they allow general interarrival and service time distributions, finite buffers and blocking. Attention is also focused on the (transient) analysis of the dynamic behavior of these networks. Based on sample path analysis, they propose new approaches to establish stochastic convexity of certain key processes that underlie these networks. Recently, stochastic optimization approaches that are based on Monte- Carlo simulation have been developed to solve various optimal design problems in queueing networks. Stochastic convexity results provide second-order optimality conditions for those approaches, and hence significantly add to the theory and applications of queueing networks.
该提案由J.G. Shanthikumar的 美国加州大学伯克利分校,哈佛的姚明 大学 拟议研究项目的重点是研究 网络的凸性 这些属性通常 它在优化设计和控制配电网中是不可缺少的, 在过去的三十年里,它一直是研究的主要工具 复杂的随机系统,如计算机系统,通信系统, 网络、数据库系统和制造系统。 PI的提出了一个新的概念,随机凸性,并强调 它在制造系统网络模型中的应用。 这个新概念捕获了二阶(例如,凸出或 网络中随机过程的行为 关于时间和其它参数变化。 排队 他们所关注的网络模型与经典的 例如,它们允许一般的到达间隔和服务时间 分布、有限缓冲区和阻塞。 注意力也集中在 对这些网络的动态行为进行(瞬态)分析。 基于样本路径分析,他们提出了新的方法, 建立某些关键过程的随机凸性, 这些网络。 最近,随机优化方法,基于Monte- Carlo模拟已发展到解决各种优化设计 网络安全的问题。 随机凸性结果提供了 这些方法的二阶最优性条件,因此 对嵌入式网络的理论和应用有重要的贡献。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
J. George Shanthikumar其他文献
Estimating Effective Capacity in Erlang Loss Systems under Competition
- DOI:
10.1007/s11134-004-5554-8 - 发表时间:
2005-01-01 - 期刊:
- 影响因子:0.700
- 作者:
Andrew M. Ross;J. George Shanthikumar - 通讯作者:
J. George Shanthikumar
Bounding the performance of tandem queues with finite buffer spaces
- DOI:
10.1007/bf02024664 - 发表时间:
1994-04-01 - 期刊:
- 影响因子:4.500
- 作者:
J. George Shanthikumar;Mohsen A. Jafari - 通讯作者:
Mohsen A. Jafari
Comparing ordered-entry queues with heterogeneous servers
- DOI:
10.1007/bf01158900 - 发表时间:
1987-09-01 - 期刊:
- 影响因子:0.700
- 作者:
J. George Shanthikumar;David D. Yao - 通讯作者:
David D. Yao
Structural properties and stochastic bounds for a buffer problem in packetized voice transmission
- DOI:
10.1007/bf02412252 - 发表时间:
1991-12-01 - 期刊:
- 影响因子:0.700
- 作者:
Teunis J. Ott;J. George Shanthikumar - 通讯作者:
J. George Shanthikumar
Optimal buffer allocation in a multicell system
- DOI:
10.1007/bf00183875 - 发表时间:
1989-09-01 - 期刊:
- 影响因子:3.200
- 作者:
J. George Shanthikumar;David D. Yao - 通讯作者:
David D. Yao
J. George Shanthikumar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('J. George Shanthikumar', 18)}}的其他基金
Mathematical Sciences: Multiunit Reliability Systems: Optimal Allocation of Resources, Stochastic Orders and Aging
数学科学:多单元可靠性系统:资源优化分配、随机阶次和老化
- 批准号:
9308149 - 财政年份:1993
- 资助金额:
$ 14.9万 - 项目类别:
Continuing Grant
Stochastic Convexity in Queueing Networks and Its Applications
排队网络中的随机凸性及其应用
- 批准号:
9113008 - 财政年份:1991
- 资助金额:
$ 14.9万 - 项目类别:
Continuing Grant
Algorithmic Methods in Applied Probability
应用概率中的算法方法
- 批准号:
8601210 - 财政年份:1986
- 资助金额:
$ 14.9万 - 项目类别:
Standard Grant
相似海外基金
Adaptive optimization: parameter-free self-tuning algorithms beyond smoothness and convexity
自适应优化:超越平滑性和凸性的无参数自调整算法
- 批准号:
24K20737 - 财政年份:2024
- 资助金额:
$ 14.9万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Interfaces, Degenerate Partial Differential Equations, and Convexity
接口、简并偏微分方程和凸性
- 批准号:
2348846 - 财政年份:2024
- 资助金额:
$ 14.9万 - 项目类别:
Standard Grant
NSF-BSF: convexity and symmetry in high dimensions, with applications
NSF-BSF:高维凸性和对称性及其应用
- 批准号:
2247834 - 财政年份:2023
- 资助金额:
$ 14.9万 - 项目类别:
Standard Grant
Postdoctoral Fellowship: MPS-Ascend: The Ghost Algebra for Correlation Functions & Convexity of Anosov Representations
博士后奖学金:MPS-Ascend:相关函数的幽灵代数
- 批准号:
2316685 - 财政年份:2023
- 资助金额:
$ 14.9万 - 项目类别:
Fellowship Award
Exploiting Structure and Hidden Convexity in Hard, Large Scale Numerical Optimization
在困难的大规模数值优化中利用结构和隐藏凸性
- 批准号:
RGPIN-2018-04028 - 财政年份:2022
- 资助金额:
$ 14.9万 - 项目类别:
Discovery Grants Program - Individual
Analytic and geometric aspects of convexity theory with applications
凸性理论的解析和几何方面及其应用
- 批准号:
RGPIN-2018-05159 - 财政年份:2022
- 资助金额:
$ 14.9万 - 项目类别:
Discovery Grants Program - Individual
CAREER: Symplectic and Holomorphic Convexity in 4-dimensions
职业:4 维辛凸性和全纯凸性
- 批准号:
2144363 - 财政年份:2022
- 资助金额:
$ 14.9万 - 项目类别:
Continuing Grant
Splitting methods in optimization: Beyond consistency and convexity.
优化中的分割方法:超越一致性和凸性。
- 批准号:
RGPIN-2019-04803 - 财政年份:2022
- 资助金额:
$ 14.9万 - 项目类别:
Discovery Grants Program - Individual
Applications of Analytic and Probabilistic Methods in Convexity to Geometric Functionals
解析和概率方法在几何泛函凸性中的应用
- 批准号:
DGECR-2022-00431 - 财政年份:2022
- 资助金额:
$ 14.9万 - 项目类别:
Discovery Launch Supplement