Interfaces, Degenerate Partial Differential Equations, and Convexity

接口、简并偏微分方程和凸性

基本信息

  • 批准号:
    2348846
  • 负责人:
  • 金额:
    $ 14.56万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-07-01 至 2027-06-30
  • 项目状态:
    未结题

项目摘要

Partial differential equations (PDE) are essential mathematical objects for modeling physical processes. This project aims to understand the properties of some fundamental PDE models for the diffusion of gas, the shape of liquid droplets, and electric transmission in composite materials. Many such processes exhibit an interface, where the equation becomes degenerate or singular. In the case of a model of gas diffusion through a porous medium, the interface is the set which separates the region where there is gas from the region where there is no gas. The boundary of a liquid droplet is another example of an interface. The project will investigate qualitative and quantitative properties of these interfaces, including convexity and smoothness. For a composite material, consisting of two materials with different conductivity properties, the interface is where these materials meet. The Principal Investigator (PI) will study the behavior of the electric field when one of the materials has a very thin part. This project has possible implications for material failure, an important question in Engineering. Students and postdoctoral scholars will be trained on the techniques and theory of these PDE models.This project centers on four topics, connected by the themes of interfaces, degeneracies, and convexity/concavity. The porous medium equation is a nonlinear degenerate parabolic equation used to model the diffusion of gas. The PI will investigate questions of concavity and convexity of solutions and finding global optimal regularity estimates. Secondly, the PI will study linear PDE whose coefficients are discontinuous along two almost touching interfaces, a model for transmission problems and composite materials. In this setting, the PI will investigate new approaches to obtaining optimal gradient estimates in the thin region between the interfaces. A third project is to study linear equations which are parabolic on the interior on a fixed domain but are degenerate at the boundary. These equations arise as linearizations of the porous medium equation and the Gauss curvature flow. The PI will investigate optimal conditions for existence and uniqueness of smooth solutions. Finally, questions of concavity of solutions to the elliptic torsion problem with Dirichlet boundary conditions and the dynamic version of this equation, known as the quasi-static droplet model, will be studied. In addition, the PI will carry out summer research projects with undergraduates, exploring explicit solutions to these equations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
偏微分方程(PDE)是模拟物理过程的基本数学对象。本计画旨在了解气体扩散、液滴形状及复合材料中电传输的一些基本偏微分方程模型的性质。许多这样的过程都有一个界面,在那里方程变得退化或奇异。在气体通过多孔介质扩散的模型的情况下,界面是将存在气体的区域与不存在气体的区域分开的集合。液滴的边界是界面的另一示例。该项目将研究这些界面的定性和定量特性,包括凸性和光滑性。对于由两种具有不同导电性能的材料组成的复合材料,界面是这些材料相遇的地方。主要研究者(PI)将研究其中一种材料具有非常薄的部分时的电场行为。该项目可能会影响材料失效,这是工程中的一个重要问题。学生和博士后学者将接受这些PDE模型的技术和理论的培训。该项目围绕四个主题,由界面,退化和凸性/凸性主题连接。多孔介质方程是一个用于模拟气体扩散的非线性退化抛物型方程。PI将研究解的凸性和凸性问题,并找到全局最优正则性估计。其次,PI将研究线性偏微分方程的系数是不连续的沿着两个几乎接触的界面,传输问题和复合材料的模型。在这种情况下,PI将研究在界面之间的薄区域中获得最佳梯度估计的新方法。第三个项目是研究线性方程是抛物型的内部上一个固定的域,但退化的边界。这些方程作为多孔介质方程和高斯曲率流的线性化而出现。PI将研究光滑解的存在性和唯一性的最优条件。最后,问题的解的椭圆扭转问题的Dirichlet边界条件和动态版本的这个方程,称为准静态液滴模型,将进行研究。此外,PI还将与本科生开展暑期研究项目,探索这些方程的显式解。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Benjamin Weinkove其他文献

Benjamin Weinkove的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Benjamin Weinkove', 18)}}的其他基金

Nonlinear Partial Differential Equations and Geometry
非线性偏微分方程和几何
  • 批准号:
    2005311
  • 财政年份:
    2020
  • 资助金额:
    $ 14.56万
  • 项目类别:
    Standard Grant
Elliptic and Parabolic Partial Differential Equations on Manifolds
流形上的椭圆和抛物型偏微分方程
  • 批准号:
    1709544
  • 财政年份:
    2017
  • 资助金额:
    $ 14.56万
  • 项目类别:
    Standard Grant
Emphasis Year in Geometric Analysis at Northwestern University
西北大学几何分析重点年
  • 批准号:
    1454077
  • 财政年份:
    2015
  • 资助金额:
    $ 14.56万
  • 项目类别:
    Standard Grant
Nonlinear PDEs and complex geometry
非线性偏微分方程和复杂几何
  • 批准号:
    1406164
  • 财政年份:
    2014
  • 资助金额:
    $ 14.56万
  • 项目类别:
    Standard Grant
Elliptic and parabolic complex Monge-Ampere equations on compact manifolds
紧流形上的椭圆和抛物线复数 Monge-Ampere 方程
  • 批准号:
    1332196
  • 财政年份:
    2012
  • 资助金额:
    $ 14.56万
  • 项目类别:
    Standard Grant
Elliptic and parabolic complex Monge-Ampere equations on compact manifolds
紧流形上的椭圆和抛物线复数 Monge-Ampere 方程
  • 批准号:
    1105373
  • 财政年份:
    2011
  • 资助金额:
    $ 14.56万
  • 项目类别:
    Standard Grant
PDE's in complex and symplectic geometry
复辛几何中的偏微分方程
  • 批准号:
    0848193
  • 财政年份:
    2008
  • 资助金额:
    $ 14.56万
  • 项目类别:
    Standard Grant
PDE's in complex and symplectic geometry
复辛几何中的偏微分方程
  • 批准号:
    0804099
  • 财政年份:
    2008
  • 资助金额:
    $ 14.56万
  • 项目类别:
    Standard Grant
Parabolic flows and canonical metrics in Kahler geometry.
卡勒几何中的抛物线流和规范度量。
  • 批准号:
    0504285
  • 财政年份:
    2005
  • 资助金额:
    $ 14.56万
  • 项目类别:
    Standard Grant

相似海外基金

Regularity Problems in Free Boundaries and Degenerate Elliptic Partial Differential Equations
自由边界和简并椭圆偏微分方程中的正则问题
  • 批准号:
    2349794
  • 财政年份:
    2024
  • 资助金额:
    $ 14.56万
  • 项目类别:
    Standard Grant
Inverse problems for degenerate hyperbolic partial differential equations on manifolds
流形上简并双曲偏微分方程的反问题
  • 批准号:
    22K20340
  • 财政年份:
    2022
  • 资助金额:
    $ 14.56万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Regularity Estimates for the Linearized Monge-Ampere and Degenerate Monge-Ampere Equations and Applications in Nonlinear Partial Differential Equations
线性蒙日安培方程和简并蒙日安培方程的正则估计及其在非线性偏微分方程中的应用
  • 批准号:
    1764248
  • 财政年份:
    2018
  • 资助金额:
    $ 14.56万
  • 项目类别:
    Standard Grant
Regularity for solutions to quasilinear degenerate parabolic-hyperbolic stochastic partial differential equations (SPDEs) driven by nonlinear multipli
由非线性乘法驱动的拟线性简并抛物双曲随机偏微分方程 (SPDE) 解的正则性
  • 批准号:
    1939627
  • 财政年份:
    2017
  • 资助金额:
    $ 14.56万
  • 项目类别:
    Studentship
Regularity of Degenerate Partial Differential Equations and Applications
简并偏微分方程的正则性及应用
  • 批准号:
    341250-2012
  • 财政年份:
    2016
  • 资助金额:
    $ 14.56万
  • 项目类别:
    Discovery Grants Program - Individual
Regularity of Degenerate Partial Differential Equations and Applications
简并偏微分方程的正则性及应用
  • 批准号:
    341250-2012
  • 财政年份:
    2015
  • 资助金额:
    $ 14.56万
  • 项目类别:
    Discovery Grants Program - Individual
Regularity of Degenerate Partial Differential Equations and Applications
简并偏微分方程的正则性及应用
  • 批准号:
    341250-2012
  • 财政年份:
    2014
  • 资助金额:
    $ 14.56万
  • 项目类别:
    Discovery Grants Program - Individual
Degenerate Partial Differential Equations in Geometry
几何中的简并偏微分方程
  • 批准号:
    1404596
  • 财政年份:
    2014
  • 资助金额:
    $ 14.56万
  • 项目类别:
    Standard Grant
Numerical methods for fully nonlinear and degenerate elliptic partial differential equations
全非线性和简并椭圆偏微分方程的数值方法
  • 批准号:
    411943-2011
  • 财政年份:
    2013
  • 资助金额:
    $ 14.56万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Regularity of Degenerate Partial Differential Equations and Applications
简并偏微分方程的正则性及应用
  • 批准号:
    341250-2012
  • 财政年份:
    2013
  • 资助金额:
    $ 14.56万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了