Testing Numerical Approaches to Phylogenetic Inference
测试系统发育推断的数值方法
基本信息
- 批准号:8822491
- 负责人:
- 金额:$ 13.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1989
- 资助国家:美国
- 起止时间:1989-08-01 至 1992-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Evolutionary relationships among organisms are central to research in the biological sciences. Understanding the history of branching and divergence through the history of a group of organisms must precede an understanding of their function, ecology, geographic distribution, even their relevance for medical research. Drs. Robert Sokal and F. James Rohlf have, for the past three decades, pioneered the use of computers for reconstructing evolutionary relationships among organisms based on morphological and molecular data sets. Several different approaches have been proposed for reconstructing phylogenies (e.g., maximum parsimony, maximum likelihood, overall similarity). Past work by Sokal and Rohlf has shown that under different circumstances, each of these alternate methods produces the most accurate and stable reconstruction of a computer- generated branching history. They now propose to develop new methods with which investigators can select the most appropriate tool for analyzing real data, for which the underlying branching history is unknown. The methods and advice to be developed will have a wide audience, including systematists working on all organisms, and functional morphologists and biogeographers, for whom evolutionary relationships provide the framework for their research.
生物体之间的进化关系是生物科学研究的核心。在了解一组生物体的功能、生态学、地理分布,甚至它们与医学研究的相关性之前,必须先了解一组生物体的分枝和分歧的历史。在过去的三十年里,罗伯特·索卡尔博士和F·詹姆斯·罗尔夫博士率先使用计算机,根据形态和分子数据集重建生物之间的进化关系。已经提出了几种不同的方法来重建系统发育(例如,最大简约法、最大似然法、总体相似性)。Sokal和Rohlf过去的工作表明,在不同的情况下,这些替代方法中的每一种都能产生最准确和最稳定的计算机生成的分支历史重建。他们现在提议开发新的方法,让研究人员可以选择最合适的工具来分析实际数据,这些数据的潜在分支历史是未知的。将要开发的方法和建议将有广泛的受众,包括致力于所有生物体的系统学家,以及进化关系为他们的研究提供框架的功能形态学家和生物地理学家。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert Sokal其他文献
Robert Sokal的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert Sokal', 18)}}的其他基金
Genetic Correlates of European Ethnohistory
欧洲民族史的遗传关联
- 批准号:
9419349 - 财政年份:1994
- 资助金额:
$ 13.34万 - 项目类别:
Continuing Grant
Genetic Correlates of European Ethnohistory
欧洲民族史的遗传关联
- 批准号:
9307912 - 财政年份:1993
- 资助金额:
$ 13.34万 - 项目类别:
Standard Grant
Spatial Analysis in Population Biology
群体生物学中的空间分析
- 批准号:
9220538 - 财政年份:1993
- 资助金额:
$ 13.34万 - 项目类别:
Continuing Grant
The Origin of the Indo-Europeans: Evidence from Genetics
印欧人的起源:遗传学证据
- 批准号:
9117350 - 财政年份:1992
- 资助金额:
$ 13.34万 - 项目类别:
Standard Grant
Spatial Analysis in Population Biology
群体生物学中的空间分析
- 批准号:
8918636 - 财政年份:1990
- 资助金额:
$ 13.34万 - 项目类别:
Standard Grant
Stability of Numerical Classifications
数值分类的稳定性
- 批准号:
8717530 - 财政年份:1988
- 资助金额:
$ 13.34万 - 项目类别:
Standard Grant
Spatial Analysis in Population Biology
群体生物学中的空间分析
- 批准号:
8614384 - 财政年份:1987
- 资助金额:
$ 13.34万 - 项目类别:
Continuing Grant
Stability of Numerical Classifications
数值分类的稳定性
- 批准号:
8306004 - 财政年份:1983
- 资助金额:
$ 13.34万 - 项目类别:
Continuing Grant
Stability of Numerical Classifications
数值分类的稳定性
- 批准号:
8003508 - 财政年份:1980
- 资助金额:
$ 13.34万 - 项目类别:
Continuing Grant
相似海外基金
Combining numerical and analytical approaches for precision cosmology based on galaxy statistics
基于星系统计的精密宇宙学结合数值和分析方法
- 批准号:
22K03634 - 财政年份:2022
- 资助金额:
$ 13.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of high-fidelity numerical modelling approaches with experimental and numerical analysis to accurately predict liquid-fuel sprays characteristics for low-emissions gas turbine combustion
通过实验和数值分析开发高保真数值建模方法,以准确预测低排放燃气轮机燃烧的液体燃料喷雾特性
- 批准号:
567957-2022 - 财政年份:2022
- 资助金额:
$ 13.34万 - 项目类别:
Postgraduate Scholarships - Doctoral
NSFGEO-NERC: Collaborative Research: Novel imaging, physiology and numerical approaches for understanding biologically mediated, unsteady sinking in marine diatoms
NSFGEO-NERC:合作研究:用于了解海洋硅藻生物介导的不稳定下沉的新颖成像、生理学和数值方法
- 批准号:
2023434 - 财政年份:2021
- 资助金额:
$ 13.34万 - 项目类别:
Standard Grant
NSFGEO-NERC: Collaborative Research: Novel imaging, physiology and numerical approaches for understanding biologically mediated, unsteady sinking in marine diatoms
NSFGEO-NERC:合作研究:用于了解海洋硅藻生物介导的不稳定下沉的新颖成像、生理学和数值方法
- 批准号:
2023442 - 财政年份:2021
- 资助金额:
$ 13.34万 - 项目类别:
Standard Grant
NSFGEO-NERC: Novel imaging, physiology and numerical approaches for understanding biologically mediated, unsteady sinking in marine diatoms
NSFGEO-NERC:用于了解海洋硅藻生物介导的不稳定下沉的新颖成像、生理学和数值方法
- 批准号:
NE/V013343/1 - 财政年份:2021
- 资助金额:
$ 13.34万 - 项目类别:
Research Grant
Collaborative research: Integrating tectonics, surface processes and paleobiodiversity using numerical and observational approaches
合作研究:利用数值和观测方法整合构造、地表过程和古生物多样性
- 批准号:
2041738 - 财政年份:2021
- 资助金额:
$ 13.34万 - 项目类别:
Standard Grant
Collaborative research: Integrating tectonics, surface processes and paleobiodiversity using numerical and observational approaches
合作研究:利用数值和观测方法整合构造、地表过程和古生物多样性
- 批准号:
2041895 - 财政年份:2021
- 资助金额:
$ 13.34万 - 项目类别:
Standard Grant
Development of cooling strategies and advanced numerical approaches for heat transfer in nuclear fusion reactor components under extreme heat loads
开发极端热负荷下核聚变反应堆部件传热的冷却策略和先进数值方法
- 批准号:
2498033 - 财政年份:2020
- 资助金额:
$ 13.34万 - 项目类别:
Studentship
Numerical and analytical approaches to random graphs
随机图的数值和分析方法
- 批准号:
554423-2020 - 财政年份:2020
- 资助金额:
$ 13.34万 - 项目类别:
University Undergraduate Student Research Awards
Effective hamiltonian construction through combining numerical simulation with experimental approaches and its application to strongly correlated topological materials
通过数值模拟与实验方法相结合的有效哈密顿构造及其在强相关拓扑材料中的应用
- 批准号:
20H01850 - 财政年份:2020
- 资助金额:
$ 13.34万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




