A Distributed Physically-Based Modeling Approach to Flash Flood Forecasting in Semi-arid Regions
半干旱地区山洪预报的分布式物理建模方法
基本信息
- 批准号:8920851
- 负责人:
- 金额:$ 15.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1990
- 资助国家:美国
- 起止时间:1990-04-15 至 1993-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The project will study the accuracy of the distributed, physically-based model KINEROS as applied to a semi-arid watershed and as used for the forecasting of flash floods. In semi- arid and arid watersheds flash floods are frequent producing loss of life and property, and warning systems (FFWS) are some of the tools used to mitigate these effects. The current FFWS do not include recent advances in the methods for hydro-meteorological data collection and analysis that makes real-time warning systems possible. This study will examine existing quality rainfall-runoff data from the 150 square kilometers, semi-arid Walnut Gulch Experimental Watershed, the effects of small scale variability of rainfall, the characteristics of the runoff processes at the watershed scale and its implications for flash flood forecasting.
该项目将研究 分布式,基于物理的模型KINEROS作为 应用于半干旱流域, 用于预测山洪暴发。 在半- 干旱和干旱流域山洪暴发是 经常造成生命和财产损失, 和警告系统(FFWS)是一些 用于减轻这些影响的工具。 的 目前的FFWS不包括最近的进展, 水文气象资料方法 收集和分析, 警报系统可能。 本研究将 检查现有的质量总体径流数据 从150平方公里的半干旱地区 核桃沟实验流域 小尺度变化的影响 降雨,径流特征 在流域尺度上的过程及其 对山洪预报的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Soroosh Sorooshian其他文献
Improve streamflow simulations by combining machine learning pre-processing and post-processing
通过结合机器学习预处理和后处理来改进流量模拟
- DOI:
10.1016/j.jhydrol.2025.132904 - 发表时间:
2025-07-01 - 期刊:
- 影响因子:6.300
- 作者:
Yuhang Zhang;Aizhong Ye;Jinyang Li;Phu Nguyen;Bita Analui;Kuolin Hsu;Soroosh Sorooshian - 通讯作者:
Soroosh Sorooshian
Error Characteristics and Scale Dependence of Current Satellite Precipitation Estimates Products in Hydrological Modeling
水文模拟中现有卫星降水估算产品的误差特征和尺度依赖性
- DOI:
10.3390/rs13163061 - 发表时间:
2021-08 - 期刊:
- 影响因子:5
- 作者:
Yuhang Zhang;Aizhong Ye;Phu Nguyen;Bita Analui;Soroosh Sorooshian;Kuolin Hsu - 通讯作者:
Kuolin Hsu
Regional and global hydrology and water resources issues: The role of international and national programs
- DOI:
10.1007/pl00012589 - 发表时间:
2002-12-01 - 期刊:
- 影响因子:1.800
- 作者:
Soroosh Sorooshian;Martha P. L. Whitaker;Terri S. Hogue - 通讯作者:
Terri S. Hogue
Fine-tuning long short-term memory models for seamless transition in hydrological modelling: From pre-training to post-application
用于水文建模中无缝过渡的微调长短期记忆模型:从预训练到应用后
- DOI:
10.1016/j.envsoft.2025.106350 - 发表时间:
2025-03-01 - 期刊:
- 影响因子:4.600
- 作者:
Xingtian Chen;Yuhang Zhang;Aizhong Ye;Jinyang Li;Kuolin Hsu;Soroosh Sorooshian - 通讯作者:
Soroosh Sorooshian
Regional Hydrological Response to Climate Change. 1997. By J. A. A. Jones, C. Lui, M.-K. Woo & H.-T Kung (eds.)
- DOI:
10.1023/a:1008021712023 - 发表时间:
1999-02-01 - 期刊:
- 影响因子:1.300
- 作者:
Shayesteh. Mahani;Soroosh Sorooshian - 通讯作者:
Soroosh Sorooshian
Soroosh Sorooshian的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Soroosh Sorooshian', 18)}}的其他基金
CyberSEES:Type 2: Precipitation Estimation from Multi-Source Information using Advanced Machine Learning
CyberSEES:类型 2:使用高级机器学习从多源信息估算降水量
- 批准号:
1331915 - 财政年份:2013
- 资助金额:
$ 15.19万 - 项目类别:
Standard Grant
Calibration of Hydrologic Models Using Multiobjectives and Visualization Techiques
使用多目标和可视化技术校准水文模型
- 批准号:
9418147 - 财政年份:1995
- 资助金额:
$ 15.19万 - 项目类别:
Continuing Grant
The Influence of Rainfall Characteristics, Hydrologic Characteristics and Rainfall Measurement Strategy on the Accuracy of Flash Flood Forecasts
降雨特征、水文特征及测雨策略对山洪预报精度的影响
- 批准号:
9307411 - 财政年份:1994
- 资助金额:
$ 15.19万 - 项目类别:
Continuing Grant
(SGER) A Novel Approach for Calibration of Hydrologic Models Using Multiobjectives and Visualization Techniques
(SGER) 使用多目标和可视化技术校准水文模型的新方法
- 批准号:
9415437 - 财政年份:1994
- 资助金额:
$ 15.19万 - 项目类别:
Standard Grant
U.S.-France Cooperative Research: Integration of Multispectral Data with Hydrologic Models for Transfer of Heat and Moisture in Temperate Regions.
美法合作研究:将多光谱数据与温带地区热量和水分传递的水文模型相结合。
- 批准号:
9314872 - 财政年份:1994
- 资助金额:
$ 15.19万 - 项目类别:
Standard Grant
Proposal for NSF Graduate Research Traineeships Hydrologic Sciences
NSF 水文科学研究生研究实习计划提案
- 批准号:
9355029 - 财政年份:1993
- 资助金额:
$ 15.19万 - 项目类别:
Continuing Grant
U.S.-Japan Workshop on Collaborative Research Topics on Emerging Hydrologic Hazard And Water Resources Engineering Issues; August 28-29, 1990, Yamanashi, Japan
美日新兴水文灾害和水资源工程问题合作研究主题研讨会;
- 批准号:
9015504 - 财政年份:1990
- 资助金额:
$ 15.19万 - 项目类别:
Standard Grant
Evaluation of the Type and Quantity of Data Appropriate for Model Calibration: Case of Flood Forecasting Models
评估适合模型校准的数据类型和数量:洪水预报模型案例
- 批准号:
8610584 - 财政年份:1986
- 资助金额:
$ 15.19万 - 项目类别:
Standard Grant
U.S.-New Zealand Cooperative Research: Modeling River Flowsfrom Rainfall Measurements (Hydrology)
美国-新西兰合作研究:根据降雨测量模拟河流流量(水文学)
- 批准号:
8413539 - 财政年份:1985
- 资助金额:
$ 15.19万 - 项目类别:
Standard Grant
Group International Travel Support for the IFAC Symposium onWater Resources Systems, Budapest, Hungary, July 2-6, l984
集团国际旅行支持 IFAC 水资源系统研讨会,匈牙利布达佩斯,1984 年 7 月 2-6 日
- 批准号:
8401082 - 财政年份:1984
- 资助金额:
$ 15.19万 - 项目类别:
Standard Grant
相似海外基金
Muscle-based Signals for Responsive Physically-Assistive Robotics
用于响应式物理辅助机器人的基于肌肉的信号
- 批准号:
LP220100417 - 财政年份:2023
- 资助金额:
$ 15.19万 - 项目类别:
Linkage Projects
Towards Developing a Physically Based Ice Jam Flood Early Warning System
致力于开发基于物理的冰塞洪水预警系统
- 批准号:
RGPIN-2021-03804 - 财政年份:2022
- 资助金额:
$ 15.19万 - 项目类别:
Discovery Grants Program - Individual
Physically based simulation: learning from and interacting with reality
基于物理的模拟:从现实中学习并与之互动
- 批准号:
RGPIN-2018-05665 - 财政年份:2022
- 资助金额:
$ 15.19万 - 项目类别:
Discovery Grants Program - Individual
A new generation of physically-based models for predicting ice-sheet fracture and sea level rise
用于预测冰盖破裂和海平面上升的新一代物理模型
- 批准号:
2744048 - 财政年份:2022
- 资助金额:
$ 15.19万 - 项目类别:
Studentship
Interactive physically-based control of visual phenomena
基于物理的交互式视觉现象控制
- 批准号:
RGPIN-2019-06895 - 财政年份:2022
- 资助金额:
$ 15.19万 - 项目类别:
Discovery Grants Program - Individual
Advanced Markov chain Monte Carlo methods for physically based lighting simulations
用于基于物理的照明模拟的高级马尔可夫链蒙特卡罗方法
- 批准号:
546767-2020 - 财政年份:2022
- 资助金额:
$ 15.19万 - 项目类别:
Postgraduate Scholarships - Doctoral
Towards Developing a Physically Based Ice Jam Flood Early Warning System
致力于开发基于物理的冰塞洪水预警系统
- 批准号:
DGECR-2021-00430 - 财政年份:2021
- 资助金额:
$ 15.19万 - 项目类别:
Discovery Launch Supplement
Advanced Markov chain Monte Carlo methods for physically based lighting simulations
用于基于物理的照明模拟的高级马尔可夫链蒙特卡罗方法
- 批准号:
546767-2020 - 财政年份:2021
- 资助金额:
$ 15.19万 - 项目类别:
Postgraduate Scholarships - Doctoral
Collaborative Research: Quantifying Watershed Dynamics in Snow-Dominated Mountainous Karst Watersheds Using Hybrid Physically Based and Deep Learning Models
合作研究:使用基于物理和深度学习的混合模型量化以雪为主的山地喀斯特流域的流域动态
- 批准号:
2043363 - 财政年份:2021
- 资助金额:
$ 15.19万 - 项目类别:
Standard Grant
Collaborative Research: Quantifying Watershed Dynamics in Snow-Dominated Mountainous Karst Watersheds Using Hybrid Physically Based and Deep Learning Models
合作研究:使用基于物理和深度学习的混合模型量化以雪为主的山地喀斯特流域的流域动态
- 批准号:
2043150 - 财政年份:2021
- 资助金额:
$ 15.19万 - 项目类别:
Standard Grant