Research in Automated Reasoning
自动推理研究
基本信息
- 批准号:8922330
- 负责人:
- 金额:$ 35.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1990
- 资助国家:美国
- 起止时间:1990-09-01 至 1994-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Several approaches to making automated reasoning systems more effective will be investigated. The Prolog Technology Theorem Prover (PTTP) has been developed as a logically and search-space complete extension of Prolog with an exceptionally high inference rate that permits it to solve shallow theorem-proving problems very rapidly. The use of PTTP in a subordinate role in conventional resolution theorem provers will be explored. PTTP can be used to implement the theory resolution or linked inference principle procedures, fast refutation checks for newly derived clauses, E-unification, and sort reasoning. A Prolog-like abductive reasoning system has been developed in PTTP and has been used for pragmatic processing of sentences in a system for text understanding. More abstract formulations of the PTTP's abductive reasoning method will be developed and studied with the objective of improving the performance of the system and enabling it to make better choices about which abductive explanation is best. Ohlbach's approach to modal reasoning is compatible with conventional resolution theorem provers, since it transforms modal formulas to classical formulas with extra world-path arguments that denote the modal prefix. Special unification algorithms for world paths, which depend on the modal accessibility relation, are then used. A partial implementation of this approach has been developed and will be refined and investigated. The approach promises to preserve the investment of developing resolution systems while proving theorems in modal logic. A case-splitting rule for resolution will be developed. For non- Horn problems with some derived ground literals, it will combine the generality of the resolution procedure and the case-splitting behavior and performance of the Davis-Putnam procedure on propositional problems.
几种使自动推理系统更加 有效的将被调查。 Prolog技术定理证明器(PTTP)已开发为 一个逻辑和搜索空间的Prolog完全扩展, 异常高的推理率,使其能够解决浅 证明定理的问题。 PTTP在一个 在传统归结定理证明器中, 探讨了 PTTP可用于实现理论解析或 链接推理原理程序,快速反驳检查 新派生子句、E-统一和排序推理。 一个Prolog类溯因推理系统已在 PTTP已被用于句子的语用处理, 文本理解系统。 更抽象的公式 PTTP的溯因推理方法将被开发和研究, 提高系统性能的目标, 它能更好地选择哪种溯因解释是最好的。 Ohlbach的模态推理方法与 传统的解决定理证明,因为它转换模式 公式到带有额外世界路径参数的经典公式 表示模态前缀。 世界的特殊统一算法 依赖于模态可访问性关系的路径则为 采用 已经开发了这种方法的部分实现 并将进行完善和调查。 该方法承诺, 保留开发解决方案系统的投资,同时证明 模态逻辑中的定理 将制定一项分案解决规则。 对于非- 霍恩问题与一些派生地面文字,它将结合联合收割机 决议程序的一般性和案件分割行为 Davis-Putnam过程在命题问题上的应用 问题
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark Stickel其他文献
Set theory in first-order logic: Clauses for Gödel's axioms
- DOI:
10.1007/bf02328452 - 发表时间:
1986-09-01 - 期刊:
- 影响因子:0.800
- 作者:
Robert Boyer;Ewing Lusk;William McCune;Ross Overbeek;Mark Stickel;Lawrence Wos - 通讯作者:
Lawrence Wos
Mark Stickel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark Stickel', 18)}}的其他基金
Travel Support for the l997 Dagstuhl Seminar on Deduction, February 24-28, l997, Wadern, Germany
1997 年 Dagstuhl 演绎研讨会旅行支持,1997 年 2 月 24 日至 28 日,德国瓦德恩
- 批准号:
9705408 - 财政年份:1997
- 资助金额:
$ 35.63万 - 项目类别:
Standard Grant
Travel Support for the l995 Dagstuhl Seminar on Deduction, March 20-24, l995, Dagstuhl Seminar Center, Wadern, Germany.
为 1995 年 Dagstuhl 演绎研讨会提供旅行支持,1995 年 3 月 20 日至 24 日,德国瓦德恩 Dagstuhl 研讨会中心。
- 批准号:
9500136 - 财政年份:1995
- 资助金额:
$ 35.63万 - 项目类别:
Standard Grant
Travel Support for American Attendees of the Dagstuhl Seminar on Deduction to be held in Germany from March 8-12, 1993
为参加 1993 年 3 月 8 日至 12 日在德国举行的 Dagstuhl 演绎研讨会的美国与会者提供差旅补助
- 批准号:
9312332 - 财政年份:1993
- 资助金额:
$ 35.63万 - 项目类别:
Standard Grant
A Prolog Technology Theorem Prover
Prolog 技术定理证明器
- 批准号:
8611116 - 财政年份:1987
- 资助金额:
$ 35.63万 - 项目类别:
Continuing Grant
相似海外基金
Automated monitoring of health and welfare in groups of pigs using evidential reasoning and video-analytics
使用证据推理和视频分析自动监测猪群的健康和福利
- 批准号:
2886810 - 财政年份:2023
- 资助金额:
$ 35.63万 - 项目类别:
Studentship
Developing and Evaluating Multi-Modal Clinical Diagnostic Reasoning Models for Automated Diagnosis Generation
开发和评估用于自动诊断生成的多模式临床诊断推理模型
- 批准号:
10724044 - 财政年份:2023
- 资助金额:
$ 35.63万 - 项目类别:
CAREER: Automated Reasoning to Advance Chemical Theory
职业:自动推理推进化学理论
- 批准号:
2236769 - 财政年份:2023
- 资助金额:
$ 35.63万 - 项目类别:
Standard Grant
Automated Reasoning and Adaptation for Assisted Experience Design
辅助体验设计的自动推理和适应
- 批准号:
RGPIN-2020-06502 - 财政年份:2022
- 资助金额:
$ 35.63万 - 项目类别:
Discovery Grants Program - Individual
Formal Analysis of Abstract Behavioural Models Using Automated Deductive Reasoning
使用自动演绎推理对抽象行为模型进行形式化分析
- 批准号:
RGPIN-2016-03992 - 财政年份:2022
- 资助金额:
$ 35.63万 - 项目类别:
Discovery Grants Program - Individual
SHF: Small: Synergy between Automated Reasoning and Interactive Theorem Proving
SHF:小:自动推理和交互式定理证明之间的协同作用
- 批准号:
2229099 - 财政年份:2022
- 资助金额:
$ 35.63万 - 项目类别:
Standard Grant
SHF : Small: Certified Automated Reasoning with BDDs (CARB)
SHF:小型:经过 BDD 认证的自动推理 (CARB)
- 批准号:
2108521 - 财政年份:2021
- 资助金额:
$ 35.63万 - 项目类别:
Standard Grant
Formal Analysis of Abstract Behavioural Models Using Automated Deductive Reasoning
使用自动演绎推理对抽象行为模型进行形式化分析
- 批准号:
RGPIN-2016-03992 - 财政年份:2021
- 资助金额:
$ 35.63万 - 项目类别:
Discovery Grants Program - Individual
Automated Reasoning and Adaptation for Assisted Experience Design
辅助体验设计的自动推理和适应
- 批准号:
RGPIN-2020-06502 - 财政年份:2021
- 资助金额:
$ 35.63万 - 项目类别:
Discovery Grants Program - Individual
SHF: Medium: Collaborative Research: Bridging Automated Formal Reasoning and Continuous Optimization for Provably Safe Deep Learning
SHF:中:协作研究:连接自动形式推理和持续优化以实现可证明安全的深度学习
- 批准号:
2033851 - 财政年份:2020
- 资助金额:
$ 35.63万 - 项目类别:
Standard Grant