SHF: Medium: Collaborative Research: Bridging Automated Formal Reasoning and Continuous Optimization for Provably Safe Deep Learning

SHF:中:协作研究:连接自动形式推理和持续优化以实现可证明安全的深度学习

基本信息

  • 批准号:
    2033851
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-01-16 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

Deep neural networks have emerged as a transformative computing technology in the last few years. However, as illustrated by recent research on adversarial machine learning, they can behave in obviously erroneous ways on anomalous or adversarial inputs and cannot be debugged using traditional software development methods. Thus, there is an urgent need for developing formal methods techniques that can assure the safety of neural networks, particularly in safety- or security-critical application domains. Motivated by this problem, this project investigates automated formal reasoning techniques for provably safe deep learning. In particular, the investigators explore verification methods for certifying robustness properties of trained networks as well as new verified training methods for finding network parameters that are safe by construction. The technical approach closely couples techniques for automated formal reasoning about systems (in particular abstraction) and continuous optimization. In particular, the project explores the use of automated abstraction techniques, originally developed for reasoning about human-written programs, in the analysis of neural networks. The project investigates the coupling of abstraction and gradient-based optimization in searching for correctness proofs and network parameters. The project introduces undergraduate and high school students from underrepresented groups to research on programming languages and formal methods through outreach programs centered around the topics on artificial intelligence.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在过去的几年里,深度神经网络已经成为一种变革性的计算技术。然而,正如最近对抗性机器学习的研究所表明的那样,它们在异常或对抗性输入上可能以明显错误的方式运行,并且无法使用传统的软件开发方法进行调试。因此,迫切需要开发能够确保神经网络安全的形式化方法技术,特别是在安全或安全关键应用领域。受此问题的启发,该项目研究了可证明安全的深度学习的自动形式推理技术。特别是,研究人员探索了验证训练网络鲁棒性的验证方法,以及新的验证训练方法,用于寻找通过构造安全的网络参数。该技术方法将系统的自动形式化推理(特别是抽象)和持续优化技术紧密结合在一起。特别是,该项目探索了在神经网络分析中使用自动抽象技术,该技术最初是为对人类编写的程序进行推理而开发的。该项目研究了在搜索正确性证明和网络参数时抽象和基于梯度的优化的耦合。该项目通过围绕人工智能主题的外展项目,向来自代表性不足群体的本科生和高中生介绍编程语言和形式化方法的研究。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Guiding Safe Exploration with Weakest Preconditions
  • DOI:
    10.48550/arxiv.2209.14148
  • 发表时间:
    2022-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Greg Anderson;Swarat Chaudhuri;Işıl Dillig
  • 通讯作者:
    Greg Anderson;Swarat Chaudhuri;Işıl Dillig
Neurosymbolic Reinforcement Learning with Formally Verified Exploration
  • DOI:
  • 发表时间:
    2020-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Greg Anderson;Abhinav Verma;Işıl Dillig;Swarat Chaudhuri
  • 通讯作者:
    Greg Anderson;Abhinav Verma;Işıl Dillig;Swarat Chaudhuri
Safe Neurosymbolic Learning with Differentiable Symbolic Execution
  • DOI:
    10.48550/arxiv.2203.07671
  • 发表时间:
    2022-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chenxi Yang;Swarat Chaudhuri
  • 通讯作者:
    Chenxi Yang;Swarat Chaudhuri
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Swarat Chaudhuri其他文献

L G ] 1 0 A pr 2 01 9 Programmatically Interpretable Reinforcement Learning
LG ] 1 0 A pr 2 01 9 程序化可解释的强化学习
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Verma;VijayaraghavanMurali;Rishabh Singh;Pushmeet Kohli;Swarat Chaudhuri
  • 通讯作者:
    Swarat Chaudhuri
Data-Driven Program Completion
数据驱动的程序完成
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yanxin Lu;Swarat Chaudhuri;C. Jermaine;David Melski
  • 通讯作者:
    David Melski
On-the-Fly Reachability and Cycle Detection for Recursive State Machines
递归状态机的动态可达性和循环检测
  • DOI:
    10.1007/978-3-540-31980-1_5
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R. Alur;Swarat Chaudhuri;K. Etessami;P. Madhusudan
  • 通讯作者:
    P. Madhusudan
A fixpoint calculus for local and global program flows
局部和全局程序流的不动点演算
Controller synthesis with inductive proofs for piecewise linear systems: An SMT-based algorithm
分段线性系统的控制器综合与归纳证明:基于 SMT 的算法

Swarat Chaudhuri的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Swarat Chaudhuri', 18)}}的其他基金

SHF: Medium: Neurosymbolic Agents for Formal Theorem-Proving
SHF:介质:用于形式定理证明的神经符号代理
  • 批准号:
    2403211
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Collaborative Research: PPoSS: Large: A Full-stack Approach to Declarative Analytics at Scale
协作研究:PPoSS:大型:大规模声明性分析的全栈方法
  • 批准号:
    2316161
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Collaborative Research: SHF: Medium: Semantics-Aware Neural Models of Code
合作研究:SHF:媒介:代码的语义感知神经模型
  • 批准号:
    2212559
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
SHF: Medium: Collaborative Research: Bridging Automated Formal Reasoning and Continuous Optimization for Provably Safe Deep Learning
SHF:中:协作研究:连接自动形式推理和持续优化以实现可证明安全的深度学习
  • 批准号:
    1901284
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
SHF: Small: Computer-Aided Grading, Feedback, and Assignment Creating in Massive Online Programming Courses
SHF:小型:大规模在线编程课程中的计算机辅助评分、反馈和作业创建
  • 批准号:
    1320860
  • 财政年份:
    2013
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
SHF: Medium: Collaborative Research: Marrying Program Analysis and Numerical Search
SHF:媒介:协作研究:程序分析与数值搜索的结合
  • 批准号:
    1162076
  • 财政年份:
    2012
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Robustness Analysis of Uncertain Programs: Theory, Algorithms, and Tools
职业:不确定程序的鲁棒性分析:理论、算法和工具
  • 批准号:
    1156059
  • 财政年份:
    2011
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
SHF: Medium: Collaborative Research: Chorus: Dynamic Isolation in Shared-Memory Parallelism
SHF:媒介:协作研究:Chorus:共享内存并行中的动态隔离
  • 批准号:
    1242507
  • 财政年份:
    2011
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Robustness Analysis of Uncertain Programs: Theory, Algorithms, and Tools
职业:不确定程序的鲁棒性分析:理论、算法和工具
  • 批准号:
    0953507
  • 财政年份:
    2010
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
SHF: Medium: Collaborative Research: Chorus: Dynamic Isolation in Shared-Memory Parallelism
SHF:媒介:协作研究:Chorus:共享内存并行中的动态隔离
  • 批准号:
    0964443
  • 财政年份:
    2010
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant

相似海外基金

Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
  • 批准号:
    2403134
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
  • 批准号:
    2402804
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
  • 批准号:
    2403408
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Toward Understandability and Interpretability for Neural Language Models of Source Code
合作研究:SHF:媒介:实现源代码神经语言模型的可理解性和可解释性
  • 批准号:
    2423813
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
  • 批准号:
    2402806
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
  • 批准号:
    2403135
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
  • 批准号:
    2403409
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
  • 批准号:
    2402805
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: High-Performance, Verified Accelerator Programming
合作研究:SHF:中:高性能、经过验证的加速器编程
  • 批准号:
    2313024
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Verifying Deep Neural Networks with Spintronic Probabilistic Computers
合作研究:SHF:中:使用自旋电子概率计算机验证深度神经网络
  • 批准号:
    2311295
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了