Exploiting Structured Computations
利用结构化计算
基本信息
- 批准号:9002891
- 负责人:
- 金额:$ 34.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1990
- 资助国家:美国
- 起止时间:1990-08-15 至 1994-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Graph traversal is a fundamental computational problem, not only because it is the natural abstraction of many search problems, but also because its complexity is at the root of important relationships among deterministic, nondeterministic, and probabilistic computations. Significant progress has been made during the last two years toward understanding the complexity of graph traversal. Viewing the problem in its natural structured setting was crucial to most or all of these advances. This project is following a number of approaches to investigate the time and space complexity of graph traversal in structured settings. The goal is to obtain stronger results in the previously studied structured settings, and novel results in substantially richer structured settings. Similarly, structured views of important algebraic problems such as matrix multiplication have been instrumental in advances toward understanding those problems. The project is also investigating the communication and space complexity of these problems, motivated by the importance of communication in parallel and distributed computation.
图遍历是一个基本的计算问题,不仅因为它是许多搜索问题的自然抽象,而且因为它的复杂性是确定性、非确定性和概率计算之间重要关系的根源。 过去两年,在理解图遍历的复杂性方面取得了重大进展。 从自然的结构化环境中看待问题对于大多数或所有这些进步至关重要。 该项目采用多种方法来研究结构化设置中图遍历的时间和空间复杂性。 目标是在先前研究的结构化设置中获得更强的结果,并在更丰富的结构化设置中获得新颖的结果。 同样,矩阵乘法等重要代数问题的结构化视图也有助于理解这些问题。 出于并行和分布式计算中通信的重要性,该项目还在研究这些问题的通信和空间复杂性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Martin Tompa其他文献
Decreasing the nesting depth of expressions involving square roots
- DOI:
10.1016/s0747-7171(85)80013-4 - 发表时间:
1985-06-01 - 期刊:
- 影响因子:
- 作者:
Allan Borodin;Ronald Fagin;John E. Hopcroft;Martin Tompa - 通讯作者:
Martin Tompa
Martin Tompa的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Martin Tompa', 18)}}的其他基金
ITR: Discovering Regulatory Elements in Biological Sequences
ITR:发现生物序列中的调控元件
- 批准号:
0218798 - 财政年份:2002
- 资助金额:
$ 34.96万 - 项目类别:
Standard Grant
Computational Problems in DNA Sequencing, and Regulatory and Sequence Analysis
DNA 测序、调控和序列分析中的计算问题
- 批准号:
9974498 - 财政年份:1999
- 资助金额:
$ 34.96万 - 项目类别:
Continuing Grant
Presidential Young Investigator Award (Computer Research)
总统青年研究员奖(计算机研究)
- 批准号:
8352093 - 财政年份:1984
- 资助金额:
$ 34.96万 - 项目类别:
Continuing Grant
Vlsi Design Aids, and Inherent Complexity of Common Problems
Vlsi 设计辅助工具以及常见问题的固有复杂性
- 批准号:
8110089 - 财政年份:1981
- 资助金额:
$ 34.96万 - 项目类别:
Standard Grant
相似海外基金
Theory, computations and applications of structured Mixed-Integer Programs
结构化混合整数程序的理论、计算和应用
- 批准号:
RGPIN-2020-04030 - 财政年份:2022
- 资助金额:
$ 34.96万 - 项目类别:
Discovery Grants Program - Individual
Theory, computations and applications of structured Mixed-Integer Programs
结构化混合整数程序的理论、计算和应用
- 批准号:
RGPIN-2020-04030 - 财政年份:2021
- 资助金额:
$ 34.96万 - 项目类别:
Discovery Grants Program - Individual
Theory, computations and applications of structured Mixed-Integer Programs
结构化混合整数程序的理论、计算和应用
- 批准号:
RGPIN-2020-04030 - 财政年份:2020
- 资助金额:
$ 34.96万 - 项目类别:
Discovery Grants Program - Individual
CRII: III: Learning Predictive Models with Structured Sparsity: Algorithms and Computations
CRII:III:学习具有结构化稀疏性的预测模型:算法和计算
- 批准号:
1948341 - 财政年份:2020
- 资助金额:
$ 34.96万 - 项目类别:
Standard Grant
Fast and Reliable Hierarchical Structured Methods for More General Matrix Computations
用于更一般矩阵计算的快速可靠的分层结构化方法
- 批准号:
1819166 - 财政年份:2018
- 资助金额:
$ 34.96万 - 项目类别:
Standard Grant
High Performance Algorithms for Sparse and Structured Symbolic Computations
用于稀疏和结构化符号计算的高性能算法
- 批准号:
155376-2013 - 财政年份:2017
- 资助金额:
$ 34.96万 - 项目类别:
Discovery Grants Program - Individual
High Performance Algorithms for Sparse and Structured Symbolic Computations
用于稀疏和结构化符号计算的高性能算法
- 批准号:
155376-2013 - 财政年份:2015
- 资助金额:
$ 34.96万 - 项目类别:
Discovery Grants Program - Individual
High Performance Algorithms for Sparse and Structured Symbolic Computations
用于稀疏和结构化符号计算的高性能算法
- 批准号:
155376-2013 - 财政年份:2014
- 资助金额:
$ 34.96万 - 项目类别:
Discovery Grants Program - Individual
High Performance Algorithms for Sparse and Structured Symbolic Computations
用于稀疏和结构化符号计算的高性能算法
- 批准号:
155376-2013 - 财政年份:2013
- 资助金额:
$ 34.96万 - 项目类别:
Discovery Grants Program - Individual
CAREER: Structured Matrix Computations: Foundations, Methods, and Applications
职业:结构化矩阵计算:基础、方法和应用
- 批准号:
1255416 - 财政年份:2013
- 资助金额:
$ 34.96万 - 项目类别:
Continuing Grant














{{item.name}}会员




