Numerical Solution of Large-Scale Stochastic Programming Problems
大规模随机规划问题的数值求解
基本信息
- 批准号:9005159
- 负责人:
- 金额:$ 3.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1990
- 资助国家:美国
- 起止时间:1990-08-01 至 1992-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The study of large-scale systems and methods of computing their optimizations is an important area with many applications. Stochastic Programming is an important area in such studies. This activity will focus on development of stochastic programming problems. Large scale here means the number of constraints as well as the number of decision and random variables in the problem can be large. Both probabilistic (reliability type) constraints and penalties for deviations are incorporated into the models. The random variables are discrete in some of the models and continuous in others but stochastic dependence is allowed in all cases. In the case of continuously distributed random variables a multivariate numerical integral approximation technique, will be used. Possible applications include optimization of earthquake resistant structures, water level regulation in lake systems, planning in interconnected power systems, solutions of economic, finance, production problems.
大规模系统及其优化计算方法的研究是一个具有许多应用的重要领域。随机规划是这类研究的一个重要领域。这个活动将集中于随机规划问题的发展。这里的大规模意味着问题中约束的数量以及决策变量和随机变量的数量可能很大。概率(可靠性类型)约束和偏差惩罚都被合并到模型中。随机变量在一些模型中是离散的,在另一些模型中是连续的,但在所有情况下都允许随机依赖。在连续分布随机变量的情况下,将使用多元数值积分逼近技术。可能的应用包括抗震结构的优化、湖泊系统的水位调节、互联电力系统的规划、经济、金融和生产问题的解决方案。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andras Prekopa其他文献
Andras Prekopa的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andras Prekopa', 18)}}的其他基金
Discrete Moment Problems and Applications
离散矩问题及应用
- 批准号:
0856663 - 财政年份:2009
- 资助金额:
$ 3.66万 - 项目类别:
Standard Grant
相似国自然基金
相似海外基金
CAREER: Novel Parallelization Frameworks for Large-Scale Network Optimization with Combinatorial Requirements: Solution Methods and Applications
职业:具有组合要求的大规模网络优化的新型并行化框架:解决方法和应用
- 批准号:
2338641 - 财政年份:2024
- 资助金额:
$ 3.66万 - 项目类别:
Standard Grant
Developing a new aspiration catheter solution for the treatment of large and medium vessel occlusions
开发用于治疗大中型血管闭塞的新型抽吸导管解决方案
- 批准号:
10699636 - 财政年份:2023
- 资助金额:
$ 3.66万 - 项目类别:
A novel nutrient upwelling solution to enable large-scale offshore aquafarming
一种新型营养物上升解决方案,可实现大规模海上水产养殖
- 批准号:
10067116 - 财政年份:2023
- 资助金额:
$ 3.66万 - 项目类别:
Collaborative R&D
New paradigms for rigorous modeling and fast solution of large-scale EMC problems
大规模 EMC 问题的严格建模和快速解决方案的新范例
- 批准号:
RGPIN-2018-05289 - 财政年份:2022
- 资助金额:
$ 3.66万 - 项目类别:
Discovery Grants Program - Individual
Solution-State High Field DNP on Large Volume Samples: Sensitivity-Enchanced NMR for the Organic Chemist
大体积样品的溶液态高场 DNP:有机化学家的灵敏度增强 NMR
- 批准号:
2203405 - 财政年份:2022
- 资助金额:
$ 3.66万 - 项目类别:
Standard Grant
I-Corps: Large-Scale, Waste Heat Recovery Solution Based on Thermoacoustic Energy Conversion
I-Corps:基于热声能量转换的大规模废热回收解决方案
- 批准号:
2054022 - 财政年份:2021
- 资助金额:
$ 3.66万 - 项目类别:
Standard Grant
Computer-assisted solution verification for 3D flows with large Reynolds numbers
大雷诺数 3D 流动的计算机辅助解决方案验证
- 批准号:
21H00998 - 财政年份:2021
- 资助金额:
$ 3.66万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Computer-assisted solution verification for the Navier-Stokes equation with large Reynolds numbers
大雷诺数纳维-斯托克斯方程的计算机辅助解验证
- 批准号:
20KK0306 - 财政年份:2021
- 资助金额:
$ 3.66万 - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))
Numerical Solution of Large-Scale Sparse Linear Systems Arising from Problems with Constraints
由约束问题引起的大规模稀疏线性系统的数值求解
- 批准号:
RGPIN-2017-04491 - 财政年份:2021
- 资助金额:
$ 3.66万 - 项目类别:
Discovery Grants Program - Individual
New paradigms for rigorous modeling and fast solution of large-scale EMC problems
大规模 EMC 问题的严格建模和快速解决方案的新范例
- 批准号:
RGPIN-2018-05289 - 财政年份:2021
- 资助金额:
$ 3.66万 - 项目类别:
Discovery Grants Program - Individual