Fracture Problems in Nonhomogeneous Material Systems: Tailored Materials, Graded Interfacial Zones and Bonded Layers

非均质材料系统中的断裂问题:定制材料、分级界面区和粘合层

基本信息

  • 批准号:
    9114439
  • 负责人:
  • 金额:
    $ 24万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1991
  • 资助国家:
    美国
  • 起止时间:
    1991-08-15 至 1996-01-31
  • 项目状态:
    已结题

项目摘要

Fracture mechanics of functionally gradient materials and material interfaces and layered orthotropic materials will be studies. The emphases in the program will be on the fracture related issues in new material systems in which strength, toughness, fatigue and corrosion properties along with the residual stresses may be controlled by controlling the composition profile during processing. Functionally gradient materials are essentially fine composites or nano composites which are synthesized to achieve a desired thermomechanical property variation in the material by grading the volume fractions of the constituent materials through the thickness. This new process of grading the properties of the interfacial regions and coatings by gradually varying the material composition through the thickness appears to have some very important advantages. First, the process smooths the stress distribution and drastically reduces the stress concentration factors thereby reducing the likelihood of failure due to residual and thermal stresses. Secondly, it improves the bonding strength, in most cases quite considerably. The third advantage of the new technique is the improvement one obtains in fracture toughness and fatigue and corrosion crack growth parameters of the material. The second part of the program deals with the investigation of the influence of material orthotropy, particularly the structure and thickness of interfacial zones in bonded layers on the crack driving force in delamination and fracture penetration problems.
将研究功能梯度材料、材料界面和层状正交异性材料的断裂力学。该计划的重点将放在新材料系统中与断裂有关的问题上,在新材料系统中,可以通过控制加工过程中的成分分布来控制强度、韧性、疲劳和腐蚀性能以及残余应力。功能梯度材料本质上是精细的复合材料或纳米复合材料,其合成是通过对组成材料的体积分数沿厚度进行分级来在材料中实现所需的热机械性能变化。这种通过随厚度逐渐改变材料组成来分级界面区域和涂层的性能的新工艺似乎具有一些非常重要的优点。首先,该工艺平滑了应力分布,显著降低了应力集中系数,从而降低了由于残余应力和热应力而导致失效的可能性。其次,它提高了粘接强度,在大多数情况下相当可观。新技术的第三个优点是提高了材料的断裂韧性和疲劳、腐蚀裂纹扩展参数。程序的第二部分研究了材料的各向异性,特别是粘结层中界面区的结构和厚度对分层和断裂穿透问题中裂纹驱动力的影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Fazil Erdogan其他文献

Stress intensity factors in two bonded elastic layers with a single edge crack under various loading conditions
  • DOI:
    10.1007/bf00035714
  • 发表时间:
    1992-09-01
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Nao -Aki Noda;Kiyomi Araki;Fazil Erdogan
  • 通讯作者:
    Fazil Erdogan
Wedge loading of a semi-infinite strip with an edge crack
带有边缘裂纹的半无限带材的楔形加载

Fazil Erdogan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Fazil Erdogan', 18)}}的其他基金

Fracture Problems in Bonded and Tailored Materials
粘合和定制材料的断裂问题
  • 批准号:
    8917867
  • 财政年份:
    1990
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Fracture Problems in Pressure Vessels and Reinforced Pipes
压力容器和加固管道的断裂问题
  • 批准号:
    8613611
  • 财政年份:
    1986
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing grant
Fracture Problems in Pressure Vessels and Reinforced Pipes
压力容器和加固管道的断裂问题
  • 批准号:
    8414477
  • 财政年份:
    1985
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Fracture Problems in Pressure Vessels and Reinforced Pipes
压力容器和加固管道的断裂问题
  • 批准号:
    8209083
  • 财政年份:
    1982
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Fracture Problems in Pressure Vessels and in Composite Materials
压力容器和复合材料的断裂问题
  • 批准号:
    7809737
  • 财政年份:
    1978
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
"Micromechanics and Fracture of Composite Materials and Related Contact and Crack Problems"
《复合材料的微观力学和断裂以及相关的接触和裂纹问题》
  • 批准号:
    7606610
  • 财政年份:
    1976
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing grant

相似海外基金

Problems in Ramsey theory
拉姆齐理论中的问题
  • 批准号:
    2582036
  • 财政年份:
    2025
  • 资助金额:
    $ 24万
  • 项目类别:
    Studentship
Understanding the role of trauma in alcohol and other drug-related problems
了解创伤在酒精和其他毒品相关问题中的作用
  • 批准号:
    DP240101473
  • 财政年份:
    2024
  • 资助金额:
    $ 24万
  • 项目类别:
    Discovery Projects
Organic Bionics: Soft Materials to Solve Hard Problems in Neuroengineering
有机仿生学:解决神经工程难题的软材料
  • 批准号:
    FT230100154
  • 财政年份:
    2024
  • 资助金额:
    $ 24万
  • 项目类别:
    ARC Future Fellowships
AF: Small: Problems in Algorithmic Game Theory for Online Markets
AF:小:在线市场的算法博弈论问题
  • 批准号:
    2332922
  • 财政年份:
    2024
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
CRII: AF: Streaming Approximability of Maximum Directed Cut and other Constraint Satisfaction Problems
CRII:AF:最大定向切割和其他约束满足问题的流近似性
  • 批准号:
    2348475
  • 财政年份:
    2024
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Duration models related problems in econometrics
计量经济学中的持续时间模型相关问题
  • 批准号:
    23K25504
  • 财政年份:
    2024
  • 资助金额:
    $ 24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Problems in Regularity Theory of Partial Differential Equations
偏微分方程正则论中的问题
  • 批准号:
    2350129
  • 财政年份:
    2024
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
SHF: Small: Taming Huge Page Problems for Memory Bulk Operations Using a Hardware/Software Co-Design Approach
SHF:小:使用硬件/软件协同设计方法解决内存批量操作的大页面问题
  • 批准号:
    2400014
  • 财政年份:
    2024
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
REU Site: Applied Mathematics in Real World Problems
REU 网站:现实世界问题中的应用数学
  • 批准号:
    2349382
  • 财政年份:
    2024
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了