Near-Wall Lift and its Role in the Survival of Limpets and Keyhole Limpets
近壁升力及其在帽贝和锁眼帽贝生存中的作用
基本信息
- 批准号:9115688
- 负责人:
- 金额:$ 17.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1992
- 资助国家:美国
- 起止时间:1992-03-01 至 1995-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
All organisms live in a fluid medium (either air or water), and are therefore subject to the physics of fluids. In particular, all plants and animals encounter fluid-dynamic forces that can potentially injure or dislodge the organism, thereby adversely affecting its survival, and in many cases fluid-dynamic forces are thought to have acted as selective factors in the evolution of body form. Aspects of these forces (e.g., drag on benthic organisms, lift on the wings of birds and insects) have been extensively studied, and our understanding of their mechanism has been an important tool in interpreting the ecology and evolution of these groups. Despite the importance of fluid-dynamic forces, one common force, near-wall lift, has escaped notice. Near-wall lift is likely to be an important source of mortality in many benthic marine animals. For instance, limpets and keyhole limpets are often killed when dislodge by hydrodynamic forces, and near- wall lift is by far the largest force acting on them. However, the mechanism of near-wall lift and its interaction with body form have never ben examined and are not well understood. These investigations by Dr. Denny have three major goals: (1) To understand the mechanism of near-wall-lift and thereby to provide a firm basis for exploring its role as a source of mortality in limpets and keyhole limpets. (2) To measure the strength distribution of limpets and keyhole limpets, thereby allowing for the quantitative prediction of rates of mortality as a function of the local wave regime. (3) To quantitatively predict the selective advantage or disadvantage in wall lift to act as an agent of selective mortality. As such, this research provides a quantitative, experimental tool for exploring the role fluid-dynamic forces play at the crucial nexus of community ecology, population biology, and the evolution of body form.
所有生物体都生活在流体介质(空气或水)中,因此受到流体物理学的影响。特别是,所有的植物和动物都会遇到流体动力,这种动力可能会潜在地伤害或驱逐有机体,从而对其生存产生不利影响,在许多情况下,流体动力被认为是身体形态进化中的选择性因素。这些力的各个方面(如对底栖生物的阻力、对鸟类和昆虫翅膀的升力)已被广泛研究,我们对其机制的理解一直是解释这些群体的生态和进化的重要工具。尽管流体动力力很重要,但一种常见的力--近壁升力--却没有引起人们的注意。近壁抬升可能是许多底栖海洋动物死亡的一个重要来源。例如,帽状物和锁孔帽状物在水动力作用下移动时往往会被杀死,而近壁升力是迄今为止作用在它们身上的最大力。然而,近壁升力的机制及其与体型的相互作用从未被研究过,也没有被很好地理解。Denny博士的这些研究有三个主要目标:(1)了解近壁抬高的机制,从而为探索其作为帽状物和锁孔帽状物死亡率来源的作用提供坚实的基础。(2)测量帽状物和锁孔帽状物的强度分布,从而能够根据局部波况对死亡率进行定量预测。(3)定量预测室壁抬高的选择性优势或劣势,作为选择性死亡率的指标。因此,这项研究为探索流体动力在群落生态学、种群生物学和身体形态演变的关键联系中所起的作用提供了一个定量的实验工具。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark Denny其他文献
Preference Versus Performance: Body Temperature of the Intertidal Snail Chlorostoma funebralis
偏好与性能:潮间带蜗牛 Chlorostoma funebralis 的体温
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
S. Tepler;K. Mach;Mark Denny - 通讯作者:
Mark Denny
Combined immunotherapy: CTLA-4 blockade potentiates anti-tumor response induced by transcutaneous immunization.
联合免疫治疗:CTLA-4 阻断可增强经皮免疫诱导的抗肿瘤反应。
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
J. Rausch;Pamela Aranda Lopez;Ariane Bialojan;Mark Denny;P. Langguth;H. Probst;H. Schild;M. Radsak - 通讯作者:
M. Radsak
A First-Principles Model of Curling Stone Dynamics
- DOI:
10.1007/s11249-022-01623-1 - 发表时间:
2022-06-30 - 期刊:
- 影响因子:3.300
- 作者:
Mark Denny - 通讯作者:
Mark Denny
Ice Deformation Explains Curling Stone Trajectories
冰变形解释了冰壶石的轨迹
- DOI:
10.1007/s11249-022-01582-7 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Mark Denny - 通讯作者:
Mark Denny
Space tether dynamics: an introduction
- DOI:
10.1088/1361-6404/aaac9c - 发表时间:
2018-04 - 期刊:
- 影响因子:0.7
- 作者:
Mark Denny - 通讯作者:
Mark Denny
Mark Denny的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark Denny', 18)}}的其他基金
RCN-UBE Incubator: Diversifying and integrating marine education at field stations along a latitudinal gradient
RCN-UBE 孵化器:沿着纬度梯度在野外站实现海洋教育的多样化和一体化
- 批准号:
2018116 - 财政年份:2020
- 资助金额:
$ 17.42万 - 项目类别:
Standard Grant
Collaborative Research: Quantifying performance in animals exposed to predictable and unpredictable variation in multiple environmental factors
合作研究:量化暴露于多种环境因素的可预测和不可预测变化的动物的表现
- 批准号:
1655529 - 财政年份:2017
- 资助金额:
$ 17.42万 - 项目类别:
Continuing Grant
Collaborative Research: Environmental Variability, Functional Redundancy, and the Maintenance of Ecological Processes: Experiments in a Model Ecosystem
合作研究:环境变异性、功能冗余和生态过程的维持:模型生态系统中的实验
- 批准号:
1130095 - 财政年份:2012
- 资助金额:
$ 17.42万 - 项目类别:
Standard Grant
Flexible joints in rigid seaweeds: structure, mechanics, and convergent evolution in articulated coralline algae
刚性海藻中的柔性关节:铰接珊瑚藻的结构、力学和趋同进化
- 批准号:
1052161 - 财政年份:2011
- 资助金额:
$ 17.42万 - 项目类别:
Continuing Grant
Flexible Joints in Rigid Seaweeds: Applying Mechanical Theory to the Convergent Evolution of Articulated Coralline Algae
刚性海藻中的柔性接头:将力学理论应用于铰接珊瑚藻的趋同进化
- 批准号:
0641068 - 财政年份:2007
- 资助金额:
$ 17.42万 - 项目类别:
Continuing Grant
Predicting Physical Disturbance in a Changing Environment: The Effect of Spatial and Temporal Scale
预测变化环境中的物理干扰:时空尺度的影响
- 批准号:
9985946 - 财政年份:2000
- 资助金额:
$ 17.42万 - 项目类别:
Standard Grant
Predicting Physical Disturbance in a Changing Environment: Field Test of a Biomechanical Approach
预测变化环境中的身体干扰:生物力学方法的现场测试
- 批准号:
9633070 - 财政年份:1996
- 资助金额:
$ 17.42万 - 项目类别:
Continuing Grant
Accelerational Forces in Breaking Waves: Their Nature and Biological Consequences
破浪中的加速力:其性质和生物学后果
- 批准号:
9313891 - 财政年份:1994
- 资助金额:
$ 17.42万 - 项目类别:
Continuing Grant
Larval Transport Processes in the Rocky Nearshore
岩石近岸的幼虫运输过程
- 批准号:
8716688 - 财政年份:1988
- 资助金额:
$ 17.42万 - 项目类别:
Continuing Grant
Wave Forces: Their Nature, Cause, and Biological Consequences
波浪力:其性质、原因和生物学后果
- 批准号:
8314591 - 财政年份:1984
- 资助金额:
$ 17.42万 - 项目类别:
Continuing Grant
相似国自然基金
Wall crossing现象和内禀Higgs态
- 批准号:11305125
- 批准年份:2013
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Cell Wall Formation in Rod Shaped Bacteria
杆状细菌细胞壁的形成
- 批准号:
BB/Y003187/1 - 财政年份:2024
- 资助金额:
$ 17.42万 - 项目类别:
Research Grant
Exploring the contribution of cell wall components and osmotic pressure to mechanical properties that enable root growth
探索细胞壁成分和渗透压对促进根系生长的机械性能的贡献
- 批准号:
24K17868 - 财政年份:2024
- 资助金额:
$ 17.42万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Effect of Reynolds number on drag reduction: from near-wall cycle to large-scale motions.
雷诺数对减阻的影响:从近壁循环到大规模运动。
- 批准号:
2345157 - 财政年份:2024
- 资助金额:
$ 17.42万 - 项目类别:
Standard Grant
An adaptive surface for improved modelling of rough wall bounded turbulence
用于改进粗糙壁边界湍流建模的自适应表面
- 批准号:
DP240101743 - 财政年份:2024
- 资助金额:
$ 17.42万 - 项目类别:
Discovery Projects
Life prediction and optimisation of advanced first-wall fusion materials
先进首壁聚变材料的寿命预测和优化
- 批准号:
IM230100125 - 财政年份:2024
- 资助金额:
$ 17.42万 - 项目类别:
Mid-Career Industry Fellowships
Local probing and imaging of spin wave propagating in a magnetic domain wall via scanning diamond NV probe microscopy
通过扫描金刚石 NV 探针显微镜对磁畴壁中传播的自旋波进行局部探测和成像
- 批准号:
24K17580 - 财政年份:2024
- 资助金额:
$ 17.42万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
STTR Phase I: A novel wall-mounted gait assist system to reduce the risk of injuries on stairs and level surfaces
STTR 第一阶段:一种新型壁挂式步态辅助系统,可降低楼梯和水平面上受伤的风险
- 批准号:
2304063 - 财政年份:2023
- 资助金额:
$ 17.42万 - 项目类别:
Standard Grant
Prevention of third party damages caused by peeling of building finishing materials of outer wall and exterior panels -Establishment of basic technology for preventive maintenance-
防止因外墙和外板建筑装饰材料剥落而造成的第三方损害 -建立预防性维护的基本技术-
- 批准号:
23H01552 - 财政年份:2023
- 资助金额:
$ 17.42万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Establishment of human abdominal aortic aneurysm wall strength prediction model using Ex Vivo Superparamagnetic Iron Oxide–Enhanced Magnetic Resonance Imaging
利用Ex Vivo超顺磁性氧化铁建立人体腹主动脉瘤壁强度预测模型
- 批准号:
23K08226 - 财政年份:2023
- 资助金额:
$ 17.42万 - 项目类别:
Grant-in-Aid for Scientific Research (C)