Theoretical Studies of Anyon Superconductivity

任意子超导理论研究

基本信息

  • 批准号:
    9120361
  • 负责人:
  • 金额:
    $ 45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1992
  • 资助国家:
    美国
  • 起止时间:
    1992-03-01 至 1995-08-31
  • 项目状态:
    已结题

项目摘要

Theoretical Studies of Anyon Superconductivity - The occurrence of fractional statistics in nature (anyons)-, the capacity of fractional statistics to cause superconductivity, and the natural appearance of fractional statistics in formal descriptions of strongly correlated model systems (e.g., the Hubbard and t-J models) are now firmly established. As a result, anyon pairing must be accepted as a potential case for high-Tc superconductivity. As yet unclear is whether anyonic superconductivity actually occurs in these (or indeed any) real materials. This question will remain open until mathematical tools sufficiently powerful to describe anyonic effects both accurately and correctly are developed. The proposed research includes both the development of formal procedures, based on perturbative techniques, to describe anyonic superconductivity in realistic settings, and the use of these procedures for computation of spectroscopic properties of high-Tc materials. %%% This work is intended to develop an accurate picture of anyonic superconductivity, that is, superconductivity whose elementary objects are pairs of odd-fractioned spin entities, rather than the paired electrons which produce normal superconductive phenomena. This new form of superconductivity is important in itself, but is also a plausible model for the recently-discovered phenomenon of high-Tc superconductivity. The central feature of the present work is the development and application of mathematical machinery suitable for detailed discussion of this phenomenon.
任意子超导性的理论研究——自然界(任意子)中分数统计的出现,分数统计引起超导性的能力,以及分数统计在强相关模型系统(例如,Hubbard和t-J模型)的正式描述中的自然出现,现在已经牢固地建立起来。因此,任何子对都必须被接受为高tc超导的潜在情况。目前尚不清楚是否在这些(或任何)真实材料中确实存在任何离子超导性。这个问题将一直保持开放,直到有足够强大的数学工具能够准确而正确地描述任何粒子效应。提出的研究包括基于微扰技术的正式程序的发展,以描述现实环境中的任意离子超导性,以及使用这些程序计算高tc材料的光谱特性。这项工作的目的是建立一个精确的任意子超导的图像,也就是说,超导的基本对象是奇分数自旋实体对,而不是产生正常超导现象的成对电子。这种新形式的超导性本身很重要,但也是最近发现的高tc超导现象的合理模型。本工作的中心特点是适合于详细讨论这一现象的数学机制的发展和应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Robert Laughlin其他文献

Robert Laughlin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Robert Laughlin', 18)}}的其他基金

EAGER: Studies in Biological Size and Shape Control
EAGER:生物尺寸和形状控制的研究
  • 批准号:
    1338376
  • 财政年份:
    2013
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
Topics in Theoretical Quantum Physics
理论量子物理专题
  • 批准号:
    9813899
  • 财政年份:
    1998
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
Phenomenology and Microscopic Theory of High-Temperature Superconductors
高温超导体现象学与微观理论
  • 批准号:
    9421888
  • 财政年份:
    1995
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
Fractional Charge and Fractional Spin in Simple Systems
简单系统中的分数电荷和分数自旋
  • 批准号:
    8816217
  • 财政年份:
    1988
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
The Fractional Quantum Hall Effect and Quantum Transport in Magnetic Fields (Materials Research)
磁场中的分数量子霍尔效应和量子输运(材料研究)
  • 批准号:
    8510062
  • 财政年份:
    1985
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
A National Action Conference
全国行动会议
  • 批准号:
    7205612
  • 财政年份:
    1972
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant

相似海外基金

REU Site: Field and laboratory studies of coastal marine processes at the Shannon Point Marine Center
REU 站点:香农角海洋中心沿海海洋过程的现场和实验室研究
  • 批准号:
    2349136
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
CAS: Optimization of CO2 to Methanol Production through Rapid Nanoparticle Synthesis Utilizing MOF Thin Films and Mechanistic Studies.
CAS:利用 MOF 薄膜和机理研究,通过快速纳米粒子合成优化 CO2 生产甲醇。
  • 批准号:
    2349338
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
CAREER: Statistical Power Analysis and Optimal Sample Size Planning for Longitudinal Studies in STEM Education
职业:STEM 教育纵向研究的统计功效分析和最佳样本量规划
  • 批准号:
    2339353
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
Experimental and numerical studies on internal erosion of granular soils
颗粒土内部侵蚀的实验与数值研究
  • 批准号:
    DE240101106
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Discovery Early Career Researcher Award
Development of B cell functional studies on primary antibody deficiencies
一抗缺陷 B 细胞功能研究的进展
  • 批准号:
    502607
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
Cryo-EM studies of a metazoan replisome captured ex vivo during elongation and termination
在延伸和终止过程中离体捕获的后生动物复制体的冷冻电镜研究
  • 批准号:
    BB/Y006232/1
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Research Grant
Cryo-EM studies of a metazoan replisome captured ex vivo during elongation and termination
在延伸和终止过程中离体捕获的后生动物复制体的冷冻电镜研究
  • 批准号:
    BB/Y006151/1
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Research Grant
Femtosecond X-Ray Diffraction Studies of Crystalline Matter Deforming under Extreme Loading
极端载荷下晶体物质变形的飞秒 X 射线衍射研究
  • 批准号:
    EP/X031624/1
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Research Grant
Studies on Hadron Resonances by uniformized Mittag-Leffler expansion
均匀 Mittag-Leffler 展开式的强子共振研究
  • 批准号:
    24K07062
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Studies in Categorical Algebra
分类代数研究
  • 批准号:
    2348833
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了