Analytical Applications of Nonlinear Laser Spectroscopy
非线性激光光谱的分析应用
基本信息
- 批准号:9200535
- 负责人:
- 金额:$ 43.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1992
- 资助国家:美国
- 起止时间:1992-04-15 至 1996-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project is in the general area of analytical and surface chemistry and in the subfield of nonlinear spectroscopy. During the tenure of this three-year continuing grant, Professor Wright and his students will investigate the utility of non-degenerate multi-wave mixing spectroscopies for new mode-selective and component-selective analyses. Mode selection is achieved by using multiple lasers to enhance spectroscopic transitions of molecules that are coupled to fixed vibrational resonances. Spectral line narrowing and component selection results from enhancing spectroscopic transitions of molecules that are coupled to fixed electronic resonances. This research extends Professor Wright's previous four-wave mixing investigations into the infrared, including the fingerprint region, where selective spectral enhancement of specific conformers will be explored. The feasibility of six-wave mixing techniques that have potential for the selective enhancement of specific Raman transitions will also be investigated. %%% This research lays the groundwork for the development of new analytical spectroscopic probes for complex chemical and biological systems.
这个项目是在分析和表面化学的一般领域和非线性光谱学的子领域。在这项为期三年的持续资助中,Wright教授和他的学生将研究非简并多波混合光谱在新型模式选择性和组分选择性分析中的应用。模式选择是通过使用多个激光器来增强与固定振动共振耦合的分子的光谱跃迁来实现的。谱线窄化和组分选择的结果来自于与固定电子共振耦合的分子的增强光谱跃迁。这项研究将Wright教授之前的四波混合研究扩展到红外线,包括指纹区域,其中将探索特定构象的选择性光谱增强。六波混频技术的可行性,有潜力的选择性增强特定的拉曼跃迁也将进行研究。本研究为开发用于复杂化学和生物系统的新型分析光谱探针奠定了基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Wright其他文献
Self-reported maternal parenting style and confidence and infant temperament in a multi-ethnic community
多种族社区中母亲自我报告的养育方式、信心和婴儿气质
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:1.9
- 作者:
S. Prady;K. Kiernan;L. Fairley;Sarah L Wilson;John Wright - 通讯作者:
John Wright
Influence of affect on cognitive social learning person variables.
情感对认知社会学习人变量的影响。
- DOI:
- 发表时间:
1982 - 期刊:
- 影响因子:0
- 作者:
John Wright;W. Mischel - 通讯作者:
W. Mischel
A one-query lower bound for unitary synthesis and breaking quantum cryptography
单一综合和破解量子密码学的单查询下界
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Alex Lombardi;Fermi Ma;John Wright - 通讯作者:
John Wright
Consistency and complexity of response sequences as a function of schedules of noncontingent reward.
响应序列的一致性和复杂性作为非偶然奖励计划的函数。
- DOI:
- 发表时间:
1962 - 期刊:
- 影响因子:0
- 作者:
John Wright - 通讯作者:
John Wright
Better information for better health
- DOI:
10.1108/cgij.2008.24813daa.001 - 发表时间:
2008-10 - 期刊:
- 影响因子:0
- 作者:
John Wright - 通讯作者:
John Wright
John Wright的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Wright', 18)}}的其他基金
Career: The Complexity pf Quantum Tasks
职业:量子任务的复杂性
- 批准号:
2339711 - 财政年份:2024
- 资助金额:
$ 43.28万 - 项目类别:
Continuing Grant
Chemical Applications of Floquet State Spectroscopy
Floquet态光谱的化学应用
- 批准号:
2203290 - 财政年份:2022
- 资助金额:
$ 43.28万 - 项目类别:
Continuing Grant
ActEarly: a City Collaboratory approach to early promotion of good health and wellbeing
ActEarly:早期促进良好健康和福祉的城市合作方法
- 批准号:
MR/S037527/1 - 财政年份:2019
- 资助金额:
$ 43.28万 - 项目类别:
Research Grant
ActEarly: a City Collaboratory approach to early promotion of good health and wellbeing
ActEarly:早期促进良好健康和福祉的城市合作方法
- 批准号:
MC_PC_18002 - 财政年份:2018
- 资助金额:
$ 43.28万 - 项目类别:
Intramural
AITF: Learning and Adapting Sparse Recovery Algorithms for RF Spectrum Sensing
AITF:学习和适应射频频谱传感的稀疏恢复算法
- 批准号:
1733857 - 财政年份:2017
- 资助金额:
$ 43.28万 - 项目类别:
Standard Grant
TRIPODS: From Foundations to Practice of Data Science and Back
TRIPODS:从数据科学的基础到实践再回来
- 批准号:
1740833 - 财政年份:2017
- 资助金额:
$ 43.28万 - 项目类别:
Continuing Grant
Coherent Multidimensional Spectroscopy of the Oxygen Evolving Complex in Photosystem II
光系统 II 中放氧复合物的相干多维光谱
- 批准号:
1709060 - 财政年份:2017
- 资助金额:
$ 43.28万 - 项目类别:
Continuing Grant
BIGDATA: F: IA: Robust Convolutional Modeling for Massive-Scale Electron Microscopy Data
BIGDATA:F:IA:大规模电子显微镜数据的鲁棒卷积建模
- 批准号:
1546411 - 财政年份:2015
- 资助金额:
$ 43.28万 - 项目类别:
Standard Grant
CIF: Small: Structured Signal Modeling via Nonconvex Optimization
CIF:小:通过非凸优化进行结构化信号建模
- 批准号:
1527809 - 财政年份:2015
- 资助金额:
$ 43.28万 - 项目类别:
Standard Grant
Coherent Multidimensional Spectroscopy of the Oxygen Evolving Complex in Photosystem II
光系统 II 中放氧复合物的相干多维光谱
- 批准号:
1410510 - 财政年份:2014
- 资助金额:
$ 43.28万 - 项目类别:
Standard Grant
相似国自然基金
Applications of AI in Market Design
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研 究基金项目
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
- 批准号:12126512
- 批准年份:2021
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
相似海外基金
Representations of the dual spaces of function spaces defined by nonlinear integrals and their applications
非线性积分定义的函数空间的对偶空间的表示及其应用
- 批准号:
23K03164 - 财政年份:2023
- 资助金额:
$ 43.28万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Nonlinear Stochastic Partial Differential Equations and Applications
非线性随机偏微分方程及其应用
- 批准号:
2307610 - 财政年份:2023
- 资助金额:
$ 43.28万 - 项目类别:
Standard Grant
Nonlinear Elliptic Equations and Systems, and Applications
非线性椭圆方程和系统以及应用
- 批准号:
2247410 - 财政年份:2023
- 资助金额:
$ 43.28万 - 项目类别:
Standard Grant
LEAPS-MPS: Controllable sets for nonlinear switched models with applications to infectious diseases
LEAPS-MPS:非线性切换模型的可控集及其在传染病中的应用
- 批准号:
2315862 - 财政年份:2023
- 资助金额:
$ 43.28万 - 项目类别:
Standard Grant
Parametric deformation of control Lyapunov function for nonlinear systems and its applications
非线性系统控制Lyapunov函数的参数变形及其应用
- 批准号:
23H01430 - 财政年份:2023
- 资助金额:
$ 43.28万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
CAREER: Active Nonlinear Photonics with Applications in Quantum Networks
职业:有源非线性光子学在量子网络中的应用
- 批准号:
2410198 - 财政年份:2023
- 资助金额:
$ 43.28万 - 项目类别:
Continuing Grant
Nonlinear dynamics of shell and plate structures, multi-dimensional and multi-field applications
壳板结构非线性动力学、多维多领域应用
- 批准号:
RGPIN-2018-06609 - 财政年份:2022
- 资助金额:
$ 43.28万 - 项目类别:
Discovery Grants Program - Individual
DMS-EPSRC Collaborative Research: Stability Analysis for Nonlinear Partial Differential Equations across Multiscale Applications
DMS-EPSRC 协作研究:跨多尺度应用的非线性偏微分方程的稳定性分析
- 批准号:
2219384 - 财政年份:2022
- 资助金额:
$ 43.28万 - 项目类别:
Standard Grant
CAREER: Active Nonlinear Photonics with Applications in Quantum Networks
职业:有源非线性光子学在量子网络中的应用
- 批准号:
2144356 - 财政年份:2022
- 资助金额:
$ 43.28万 - 项目类别:
Continuing Grant
THz source development for THz nonlinear optics and industrial applications
太赫兹非线性光学和工业应用的太赫兹源开发
- 批准号:
RGPIN-2017-05826 - 财政年份:2022
- 资助金额:
$ 43.28万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




