Nonlinear Elliptic Equations and Systems, and Applications
非线性椭圆方程和系统以及应用
基本信息
- 批准号:2247410
- 负责人:
- 金额:$ 39.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Partial differential equations arise naturally in physics, engineering, geometry, and many other fields, and they form the basis for modeling many phenomena in the physical world. The particular class of "fully nonlinear elliptic equations and systems" is especially important from this perspective. For instance, such equations and systems turn up in the theoretical study of composite materials. This project contributes to a better understanding of fully nonlinear elliptic equations and systems, thereby providing scientists and engineers with sharpened insight into various physical processes and ultimately enhancing the quality of consumer products manufactured from composites. As part of the project, the principal investigator trains Ph.D. students, many of whom are expected to continue their careers as educators. They, in turn, will convey to even younger generations both their mathematical knowledge and the long-term value of mathematical research not only to science and engineering but also, in the end, to society.At a technical level, the PI has made valuable contributions in the areas of the project and the work supported by this award is a natural continuation of his earlier work. One part of the project concerns a long-standing open problem on the existence and compactness of solutions to a fully nonlinear Yamabe problem. This is equivalent to solving, on a Riemannian manifold, a fully nonlinear elliptic (but not uniformly elliptic) partial differential equation of second order. Closely related work includes a fully nonlinear Nirenberg problem and a fully nonlinear Loewner-Nirenberg problem. There has not been enough understanding for such type of equations, especially comparing to that available for fully nonlinear uniformly elliptic equations of second order where the theory is much more mature. The study of the open problem should lead to better understanding of these elliptic, but not uniformly elliptic, equations. It will also lead to a better understanding of degenerate elliptic fully nonlinear equations of second order. This will provide new tools in the study of this and other important nonlinear partial differential equations arising from geometry and physics. Another part of the project concerns elliptic equations and systems arising in the study of fluids and composite materials. In particular, new tools are developed to study a long-standing open problem on the existence of smooth solutions to the incompressible stationary Navier-Stokes equations on a flat torus of dimension sixteen.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
偏微分方程自然而然地出现在物理、工程、几何和许多其他领域,它们构成了对物理世界中的许多现象进行建模的基础。从这个角度来看,一类特殊的“完全非线性椭圆型方程和系统”尤为重要。例如,在复合材料的理论研究中就出现了这样的方程和系统。该项目有助于更好地了解完全非线性的椭圆方程和系统,从而为科学家和工程师提供对各种物理过程的更敏锐的洞察力,并最终提高由复合材料制造的消费产品的质量。作为该项目的一部分,首席调查员培训博士生,其中许多人预计将继续他们的教育工作者职业生涯。反过来,他们将把他们的数学知识和数学研究的长期价值传递给更年轻的一代,不仅对科学和工程,而且最终对社会。在技术层面上,国际数学奖在项目领域做出了宝贵的贡献,这一奖项支持的工作是他早期工作的自然延续。该项目的一部分涉及一个长期悬而未决的问题,即一个完全非线性的Yamabe问题解的存在性和紧性。这等价于在黎曼流形上求解一个完全非线性的二阶椭圆型(但不是一致椭圆型)偏微分方程。与此密切相关的工作包括完全非线性的Nirenberg问题和完全非线性的Loewner-Nirenberg问题。对这类方程的认识还不够深入,尤其是与理论比较成熟的完全非线性二阶一致椭圆型方程相比。对开放问题的研究应该有助于更好地理解这些椭圆型方程,但不是一致椭圆型方程。它还将有助于更好地理解退化的二阶椭圆型完全非线性方程。这将为研究几何和物理中产生的这个和其他重要的非线性偏微分方程组提供新的工具。该项目的另一部分涉及流体和复合材料研究中出现的椭圆型方程和系统。特别是,开发了新的工具来研究一个长期悬而未决的问题,即不可压缩定常Navier-Stokes方程在16维平面环面上的光滑解的存在性。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yanyan Li其他文献
A 3D Fracture Network Model for the Undisturbed Rock Mass at the Songta Dam Site Based on Small Samples
基于小样本的松塔坝址原状岩体三维裂隙网络模型
- DOI:
10.1007/s00603-015-0747-5 - 发表时间:
2016-02 - 期刊:
- 影响因子:6.2
- 作者:
Xudong Han;Jianping Chen;Qing Wang;Yanyan Li;Wen Zhang;Tianwen Yu - 通讯作者:
Tianwen Yu
The prevalence of parent-teacher interaction in developing countries and its effect on student outcomes
发展中国家家长与教师互动的普遍性及其对学生成绩的影响
- DOI:
10.1016/j.tate.2019.102878 - 发表时间:
2019 - 期刊:
- 影响因子:3.9
- 作者:
Guirong Li;M. Lin;Chengfang Liu;Angela Johnson;Yanyan Li;P. Loyalka - 通讯作者:
P. Loyalka
Harmine mediated neuroprotection via evaluation of glutamate transporter 1 in a rat model of global cerebral ischemia
在全脑缺血大鼠模型中,去氢骆驼蓬碱通过评估谷氨酸转运蛋白 1 介导的神经保护作用
- DOI:
10.1016/j.neulet.2014.09.023 - 发表时间:
2014-11 - 期刊:
- 影响因子:2.5
- 作者:
Piyun Sun;Shuyan Zhang;Yanyan Li;Lihua Wang - 通讯作者:
Lihua Wang
Gradient Type Methods for Linear Hyperspectral Unmixing
线性高光谱解混的梯度型方法
- DOI:
10.4208/csiam-am.so-2021-0001 - 发表时间:
2022-06 - 期刊:
- 影响因子:0
- 作者:
Fangfang Xu;Yating Wang;Yanyan Li;Lu Liu;Tonghua Tian - 通讯作者:
Tonghua Tian
Leveraging Atriplex hortensis choline monooxygenase to improve chilling tolerance in cotton
利用滨藜胆碱单加氧酶提高棉花的耐冷性
- DOI:
10.1016/j.envexpbot.2019.03.012 - 发表时间:
2019-06 - 期刊:
- 影响因子:5.7
- 作者:
Yanan Wang;Chengzhen Liang;ZhigangMeng;Yanyan Li;Muhammad Ali Abid;Muhammad Askari;Peilin Wang;Yuan Wang;Guoqing Sun;Yongping Cai;Shou-Yi Chen;Yi Lin;Rui Zhang;S;ui Guo - 通讯作者:
ui Guo
Yanyan Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yanyan Li', 18)}}的其他基金
Collaborative Research: Building A Cybersecurity Mindset Through Continuous Cross-module Learning
协作研究:通过持续的跨模块学习建立网络安全心态
- 批准号:
2315490 - 财政年份:2023
- 资助金额:
$ 39.27万 - 项目类别:
Standard Grant
Collaborative Research: CISE-MSI: DP: OAC: Integrated and Extensible Platform for Rethinking the Security of AI-assisted UAV Paradigm
合作研究:CISE-MSI:DP:OAC:重新思考人工智能辅助无人机范式安全性的集成和可扩展平台
- 批准号:
2318710 - 财政年份:2023
- 资助金额:
$ 39.27万 - 项目类别:
Standard Grant
Theory of Nonlinear Elliptic Equations and Systems
非线性椭圆方程和系统理论
- 批准号:
2000261 - 财政年份:2020
- 资助金额:
$ 39.27万 - 项目类别:
Standard Grant
Nonlinear Elliptic Equations and Systems and Applications
非线性椭圆方程和系统及应用
- 批准号:
1501004 - 财政年份:2015
- 资助金额:
$ 39.27万 - 项目类别:
Continuing Grant
Nonlinear Elliptic Equations and Applications
非线性椭圆方程及其应用
- 批准号:
1203961 - 财政年份:2012
- 资助金额:
$ 39.27万 - 项目类别:
Continuing Grant
FRG: Collaborative research: Emerging issues in the sciences involving non standard diffusion
FRG:合作研究:涉及非标准扩散的科学中的新问题
- 批准号:
1065971 - 财政年份:2011
- 资助金额:
$ 39.27万 - 项目类别:
Standard Grant
On Some Nonlinear Elliptic Equations
关于一些非线性椭圆方程
- 批准号:
0701545 - 财政年份:2007
- 资助金额:
$ 39.27万 - 项目类别:
Continuing Grant
Advances in Modern Free Boundary Problems
现代自由边界问题的进展
- 批准号:
0600930 - 财政年份:2006
- 资助金额:
$ 39.27万 - 项目类别:
Standard Grant
On Some Fully Nonlinear Elliptic Equations
关于一些完全非线性椭圆方程
- 批准号:
0401118 - 财政年份:2004
- 资助金额:
$ 39.27万 - 项目类别:
Continuing Grant
Nonlinear Elliptic Equations and Systems
非线性椭圆方程和系统
- 批准号:
0100819 - 财政年份:2001
- 资助金额:
$ 39.27万 - 项目类别:
Continuing Grant
相似海外基金
Singularity and structure of solutions to nonlinear elliptic partial differential equations
非线性椭圆偏微分方程解的奇异性和结构
- 批准号:
23K03167 - 财政年份:2023
- 资助金额:
$ 39.27万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Singular and Global Solutions to Nonlinear Elliptic Equations
职业:非线性椭圆方程的奇异和全局解
- 批准号:
2143668 - 财政年份:2022
- 资助金额:
$ 39.27万 - 项目类别:
Continuing Grant
Singular solutions for nonlinear elliptic and parabolic equations
非线性椭圆方程和抛物方程的奇异解
- 批准号:
DP220101816 - 财政年份:2022
- 资助金额:
$ 39.27万 - 项目类别:
Discovery Projects
Singularity Formations in Nonlinear Elliptic and Parabolic Equations
非线性椭圆方程和抛物线方程中的奇异性形成
- 批准号:
RGPIN-2018-03773 - 财政年份:2022
- 资助金额:
$ 39.27万 - 项目类别:
Discovery Grants Program - Individual
Narrow-Stencil Numerical Methods for Approximating Nonlinear Elliptic Partial Differential Equations
逼近非线性椭圆偏微分方程的窄模板数值方法
- 批准号:
2111059 - 财政年份:2021
- 资助金额:
$ 39.27万 - 项目类别:
Standard Grant
Singularity Formations in Nonlinear Elliptic and Parabolic Equations
非线性椭圆方程和抛物线方程中的奇异性形成
- 批准号:
RGPIN-2018-03773 - 财政年份:2021
- 资助金额:
$ 39.27万 - 项目类别:
Discovery Grants Program - Individual
Existence and non-existence of blowing-up solutions for nonlinear elliptic equations arising in physics and geometry
物理和几何中非线性椭圆方程的爆炸解的存在性和不存在性
- 批准号:
RGPIN-2016-04195 - 财政年份:2021
- 资助金额:
$ 39.27万 - 项目类别:
Discovery Grants Program - Individual
Singularity Formations in Nonlinear Elliptic and Parabolic Equations
非线性椭圆方程和抛物线方程中的奇异性形成
- 批准号:
RGPIN-2018-03773 - 财政年份:2020
- 资助金额:
$ 39.27万 - 项目类别:
Discovery Grants Program - Individual
The study on nonlinear elliptic partial differential equations via variational and perturbation methods
非线性椭圆偏微分方程的变分法和摄动法研究
- 批准号:
20K03691 - 财政年份:2020
- 资助金额:
$ 39.27万 - 项目类别:
Grant-in-Aid for Scientific Research (C)