RIA: Extensions of Learning Models and Applications to Signal Processing and Geometric Reconstruction

RIA:学习模型及其在信号处理和几何重建中的应用的扩展

基本信息

  • 批准号:
    9209577
  • 负责人:
  • 金额:
    $ 6万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1992
  • 资助国家:
    美国
  • 起止时间:
    1992-07-01 至 1994-12-31
  • 项目状态:
    已结题

项目摘要

Recently there has been a great deal of work on formal models of machine learning such as the probably approximately correct (or PAC learning model. This model is a precise framework attempting to capture the notion of learning from examples. Recent progress in machine learning and statistical inference on paradigms such as the PAC model has provided fundamental results on the amount of data needed for function approximation in a completely nonparametric setting. The applicability of these paradigms is limited by the assumptions on the data gathering mechanisms and the performance criteria. Some of these assumptions will be relaxed to allow the extended learning paradigm to be applied to areas such as signal/image processing and geometric reconstruction. The approach is to place mild assumptions on the function classes while allowing more flexibility in the sampling and error criteria. Specifically, the extensions proposed are to allow deterministic sampling strategies, sampling over noncompact domains, and learning with respect to general performance criterion. The extended model will be applied to a variety of problems in signal processing and geometric reconstruction to provide information complexity results for some classical and new reconstruction/estimation problems. In the area of signal processing, the framework will be applied to problems dealing with tomographic image reconstruction, multiresolution signal processing, and classical sampling theorems. In the area of geometric reconstruction, applications to stochastic geometry and shape form probing problems. The approach will provide results on the fundamental capabilities and limitations of reconstruction as well as sample size bounds for these applications.
最近,在机器学习的形式模型方面已经有了大量的工作,例如可能近似正确(或PAC学习模型)。这个模型是一个精确的框架,试图抓住从例子中学习的概念。在机器学习和关于范例的统计推理方面的最新进展,例如PAC模型,已经提供了关于在完全非参数设置下的函数逼近所需的数据量的基本结果。这些范例的适用性受到对数据收集机制和业绩标准的假设的限制。其中一些假设将被放宽,以便将扩展的学习范例应用于信号/图像处理和几何重建等领域。方法是对函数类进行温和的假设,同时允许在采样和误差标准方面有更大的灵活性。具体地说,提出的扩展是允许确定性抽样策略,非紧域上的抽样,以及关于一般性能准则的学习。扩展的模型将应用于信号处理和几何重建中的各种问题,为一些经典的和新的重建/估计问题提供信息复杂性结果。在信号处理领域,该框架将应用于处理层析图像重建、多分辨率信号处理和经典采样定理的问题。在几何重建领域,随机几何和形状的应用形成了探测问题。该方法将提供关于重建的基本能力和局限性以及这些应用的样本大小界限的结果。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sanjeev Kulkarni其他文献

Immunological Effects of Laparoscopic Versus Open Rectal Cancer Surgery
  • DOI:
    10.1007/s12262-020-02332-6
  • 发表时间:
    2020-06-13
  • 期刊:
  • 影响因子:
    0.400
  • 作者:
    Sanjeev Kulkarni;Mira Sudam Waugh;Bharat Veerabhadran;Madhu Muralee;Arun Peter Mathew;K. M. Jagathnath Krishna;T. R. Santhosh Kumar;Chandramohan Krishnan Nair
  • 通讯作者:
    Chandramohan Krishnan Nair
Master–Worker: An Enabling Framework for Applications on the Computational Grid
Master-Worker:计算网格上的应用程序的启用框架
  • DOI:
    10.1023/a:1011416310759
  • 发表时间:
    2001
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jean;Sanjeev Kulkarni;Michael Yoder;Jeff T. Linderoth
  • 通讯作者:
    Jeff T. Linderoth
Integrating Microservices and Microfrontends: A Comprehensive Literature Review on Architecture, Design Patterns, and Implementation Challenges
集成微服务和微前端:关于架构、设计模式和实施挑战的综合文献综述
Speech and Language Disorders
言语和语言障碍
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Zydney;Shalin Hai;K. Renninger;Alexandra List;Ilonca Hardy;Susanne Koerber;K. Lattal;N. Seel;Joan M. Farrell;Heather Fretwell;Neele Reiss;Giovanni Pezzulo;Martin Volker Butz;Sandra P. Marshall;JungMi Lee;M. V. Kesteren;M. Rijpkema;D. J. Ruiter;Guillén Fernández;Yasuaki Sakamoto;Erin Moran;John S. Carlson;B. Tableman;D. McInerney;Mark Girod;N. Seel;C. Looi;H. So;Wenli Chen;Baohui Zhang;L. Wong;P. Seow;Angelika Rieder;Stanley J. Weiss;E. Waal;Gerri R. Hanten;D. Curran;Ariane S. Willems;D. Lewalter;Paul Bouchard;E. Usher;A. Towse;L. Ball;Charlie N. Lewis;R. Low;P. Jin;M. Gläser;Mary Niemczyk;Brendan D. Murray;E. Kensinger;P. Pirnay;Dirk Ifenthaler;T. Tiropanis;Hugh C. Davis;S. Cerri;Otmar Bock;Frank Guerin;Zhong;Daniel Cohen;Nichola Rice Cohen;Alvaro Pascual;Edwin Robertson;Christopher M. Conway;N. Ranjith;B. Ploog;Rim Razzouk;Tristan Johnson;R. Geva;Michael J. Wenger;T. Menneer;J. Bittner;Esther Herrmann;M. Worring;Franco Landriscina;C. Frasson;Emmanuel G. Blanchard;Tom Zentall;M. Ataizi;H. Horz;F. Toates;Eugene Subbotsky;C. Dudley;Michael Mäs;J. Kitts;K. Jusoff;Siti Akmar Abu Samah;Sandra Y. Okita;Eylem Şimşek;Ludwig Huber;Andreas Olsson;Sherry D. Lyons;Z. Berge;Joseph Psotka;C. Victor Fung;C. Randles;Stephanie D. H. Evergreen;Chris L. S. Coryn;T. Reio;Vasiliki K. Simina;Carolyn P. Panofsky;Michal Al;M. Margalit;Sanna Järvelä;I. Jahnke;Ines Langemeyer;Aytac Gogus;Michael E. Lusignan;D. Margoliash;M. Panayi;David M. Roy;David R. Brodbeck;J. Grau;Paul D. Ayres;Gabriele Cierniak;Fabio Crestani;Dominic R. Primé;Terence J. G. Tracey;N. Turk;Gilbert Harman;Sanjeev Kulkarni;J. Gidley;George W. Burns;A. Boden;Bernhard Nett;Thomas von Rekowski;Volker Wulf;Nipan Maniar;Daniel A. Braun;D. Wolpert;M. Hannafin;Jaime R. S. Fonseca;Elizabeth A. Webster;A. Hadwin;M. Ainley;Kalpana Vengopal;R. Catrambone;Henry Railo;M. Hannula;F. Schott;F. H. Santos;Kazuhiko Hagiwara;Qiong Liu;Ying Wu;Razvan V. Florian;Joerg Zumbach;Birgit Reisenhofer;Luis Macedo;R. Reisenzein;Amílcar Cardoso;Thomas Antwi Bosiakoh;P. Blumschein
  • 通讯作者:
    P. Blumschein
An enabling framework for master-worker applications on the Computational Grid
计算网格上主从应用程序的支持框架

Sanjeev Kulkarni的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sanjeev Kulkarni', 18)}}的其他基金

Graduate Research Fellowship Program (GRFP)
研究生研究奖学金计划(GRFP)
  • 批准号:
    1148900
  • 财政年份:
    2011
  • 资助金额:
    $ 6万
  • 项目类别:
    Fellowship Award
ITR: Distributed Learning in Sensor Networks
ITR:传感器网络中的分布式学习
  • 批准号:
    0312413
  • 财政年份:
    2003
  • 资助金额:
    $ 6万
  • 项目类别:
    Continuing Grant
NSF Young Investigator
NSF 青年研究员
  • 批准号:
    9457645
  • 财政年份:
    1994
  • 资助金额:
    $ 6万
  • 项目类别:
    Continuing Grant
BLOCK TRAVEL: International Conference on "Computing and Intelligent Systems". To be held in Bangalore, India December 20-22, l993.
BLOCK TRAVEL:“计算与智能系统”国际会议。
  • 批准号:
    9319619
  • 财政年份:
    1993
  • 资助金额:
    $ 6万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: Enabling Cloud-Permitting and Coupled Climate Modeling via Nonhydrostatic Extensions of the CESM Spectral Element Dynamical Core
合作研究:通过 CESM 谱元动力核心的非静水力扩展实现云允许和耦合气候建模
  • 批准号:
    2332469
  • 财政年份:
    2024
  • 资助金额:
    $ 6万
  • 项目类别:
    Continuing Grant
Collaborative Research: Enabling Cloud-Permitting and Coupled Climate Modeling via Nonhydrostatic Extensions of the CESM Spectral Element Dynamical Core
合作研究:通过 CESM 谱元动力核心的非静水力扩展实现云允许和耦合气候建模
  • 批准号:
    2332468
  • 财政年份:
    2024
  • 资助金额:
    $ 6万
  • 项目类别:
    Continuing Grant
RUI: characterizing and optimizing extensions of LCDM
RUI:表征和优化 LCDM 的扩展
  • 批准号:
    2308173
  • 财政年份:
    2023
  • 资助金额:
    $ 6万
  • 项目类别:
    Standard Grant
Mathematical analyses on one-bit secret sharing schemes and their extensions
一位秘密共享方案及其扩展的数学分析
  • 批准号:
    23K10979
  • 财政年份:
    2023
  • 资助金额:
    $ 6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Multivariable and Higher order extensions of discrete Painlev\'e equaitons
离散 Painlev 方程的多变量和高阶扩展
  • 批准号:
    23K03173
  • 财政年份:
    2023
  • 资助金额:
    $ 6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Extensions of matroid Hodge theory
拟阵霍奇理论的扩展
  • 批准号:
    EP/X001229/1
  • 财政年份:
    2023
  • 资助金额:
    $ 6万
  • 项目类别:
    Research Grant
Ore extensions of trusses
矿石桁架延伸
  • 批准号:
    2893931
  • 财政年份:
    2023
  • 资助金额:
    $ 6万
  • 项目类别:
    Studentship
Rationally designed ribozymes switched-on by nucleotide repeat extensions as potential tools of genetic therapy for repeat expansion disorders.
合理设计的核酶通过核苷酸重复延伸开启,作为重复扩张疾病基因治疗的潜在工具。
  • 批准号:
    479481
  • 财政年份:
    2023
  • 资助金额:
    $ 6万
  • 项目类别:
    Operating Grants
Assessing Tele-Health Outcomes in Multiyear Extensions of Parkinson's Disease Trials-2 (AT-HOME PD-2)
评估帕金森病多年扩展试验中的远程医疗结果 Trials-2 (AT-HOME PD-2)
  • 批准号:
    10658165
  • 财政年份:
    2023
  • 资助金额:
    $ 6万
  • 项目类别:
Evaluating Medicaid Postpartum Coverage Extensions through an Equity Lens
通过公平视角评估医疗补助产后覆盖​​范围扩展
  • 批准号:
    10594173
  • 财政年份:
    2023
  • 资助金额:
    $ 6万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了