Genetic Algorithms for Visual Reconstruction Problems
视觉重建问题的遗传算法
基本信息
- 批准号:9210648
- 负责人:
- 金额:$ 16.82万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1993
- 资助国家:美国
- 起止时间:1993-08-15 至 1998-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9210648 Vemuri The goal of the proposed research is to develop a unified computational framework for several low-level vision problems which fall under the generic descriptions. Formulations in literature of a majority of these problems lead to minimization of non-convex functionals. Existing minimization techniques (stochastic or deterministic) are either computationally tardy or are efficient only under certain restrictive assumptions. Hence, there is a critical need to examine alternate optimization techniques that are not susceptible to pitfalls of the existing techniques, and the proposed research is an attempt in this direction. This research is concerned with the application of a relatively new technique called genetic algorithms (GAs) to a variety of visual reconstruction problems namely, stereo matching, discontinuity preserving surface reconstruction, and structure form motions. The proposed research will focus on issues involved in the analytical modeling of the GA using Markov chains to facilitate convergence analysis of the algorithm when applied to Visual Reconstruction problems. The theoretical work will be concluded with algorithm implementation and testing on real image data. The proposed unified computational framework will significantly advance the state of the art in computational vision. ***
9210648 Vemuri所提出的研究的目标是开发一个统一的计算框架的几个低层次的视觉问题属于通用的描述。 这些问题的大多数文献中的配方导致非凸泛函的最小化。 现有的最小化技术(随机或确定性)要么计算缓慢,或只有在某些限制性的假设是有效的。 因此,有一个关键的需要检查替代的优化技术,不容易受到现有技术的陷阱,拟议的研究是在这个方向上的尝试。 本研究关注的是应用一种相对较新的技术,称为遗传算法(GAs)的各种视觉重建问题,即立体匹配,不连续保持表面重建,和结构形式的运动。 拟议的研究将集中在使用马尔可夫链的GA的分析建模,以促进算法的收敛性分析时,应用到视觉重建问题所涉及的问题。 理论工作将与算法实现和测试的真实的图像数据。 所提出的统一计算框架将显著推进计算视觉的最新发展。 ***
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Baba Vemuri其他文献
Baba Vemuri的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Baba Vemuri', 18)}}的其他基金
Automated Analysis of Movement Disorders from Diffusion and Functional MRI
通过弥散和功能 MRI 自动分析运动障碍
- 批准号:
1724174 - 财政年份:2017
- 资助金额:
$ 16.82万 - 项目类别:
Standard Grant
RI: Small: Efficient Statistical Computing on Riemannian Manifolds with Applications to Medical Imaging and Computer Vision
RI:小型:黎曼流形的高效统计计算及其在医学成像和计算机视觉中的应用
- 批准号:
1525431 - 财政年份:2015
- 资助金额:
$ 16.82万 - 项目类别:
Continuing Grant
Compact & Versatile Geometric Models for 3D Shape Recovery from Medical Images
袖珍的
- 批准号:
9811042 - 财政年份:1998
- 资助金额:
$ 16.82万 - 项目类别:
Continuing Grant
Research Initiation: Towards a Computational Theory for Integrating Multiple Sources of Information in Computer Vision
研究启动:建立计算机视觉中集成多种信息源的计算理论
- 批准号:
8810751 - 财政年份:1988
- 资助金额:
$ 16.82万 - 项目类别:
Standard Grant
Engineering Research Equipment Grant: A Proposal for Computer Vision Research Instrumentation
工程研究设备补助金:计算机视觉研究仪器提案
- 批准号:
8811831 - 财政年份:1988
- 资助金额:
$ 16.82万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Towards Harnessing the Motility of Microorganisms: Fast Algorithms, Data-Driven Models, and 3D Interactive Visual Computing
职业:利用微生物的运动性:快速算法、数据驱动模型和 3D 交互式视觉计算
- 批准号:
2408964 - 财政年份:2023
- 资助金额:
$ 16.82万 - 项目类别:
Continuing Grant
CAREER: Towards Harnessing the Motility of Microorganisms: Fast Algorithms, Data-Driven Models, and 3D Interactive Visual Computing
职业:利用微生物的运动性:快速算法、数据驱动模型和 3D 交互式视觉计算
- 批准号:
2146191 - 财政年份:2022
- 资助金额:
$ 16.82万 - 项目类别:
Continuing Grant
Novel Learning-Based Visual Algorithms and Fusion Methods for High-Dimensional/Multi-Modality Big Data
基于学习的新型高维/多模态大数据视觉算法和融合方法
- 批准号:
RGPIN-2022-02948 - 财政年份:2022
- 资助金额:
$ 16.82万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: SaTC: CORE: Medium: Novel Algorithms and Tools for Empowering People Who Are Blind to Safeguard Private Visual Content
协作研究:SaTC:核心:媒介:帮助盲人保护私人视觉内容的新颖算法和工具
- 批准号:
2126314 - 财政年份:2021
- 资助金额:
$ 16.82万 - 项目类别:
Standard Grant
Methods and algorithms for multi-camera visual surveillance and monitoring
多摄像机视觉监视和监控的方法和算法
- 批准号:
RGPIN-2016-04889 - 财政年份:2021
- 资助金额:
$ 16.82万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: SaTC: CORE: Medium: Novel Algorithms and Tools for Empowering People Who Are Blind to Safeguard Private Visual Content
协作研究:SaTC:核心:媒介:帮助盲人保护私人视觉内容的新颖算法和工具
- 批准号:
2126297 - 财政年份:2021
- 资助金额:
$ 16.82万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Medium: Novel Algorithms and Tools for Empowering People Who Are Blind to Safeguard Private Visual Content
协作研究:SaTC:核心:媒介:帮助盲人保护私人视觉内容的新颖算法和工具
- 批准号:
2125925 - 财政年份:2021
- 资助金额:
$ 16.82万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Medium: Novel Algorithms and Tools for Empowering People Who Are Blind to Safeguard Private Visual Content
协作研究:SaTC:核心:媒介:帮助盲人保护私人视觉内容的新颖算法和工具
- 批准号:
2148080 - 财政年份:2021
- 资助金额:
$ 16.82万 - 项目类别:
Standard Grant
Neural algorithms underlying diversity in visual feature integration
视觉特征集成多样性背后的神经算法
- 批准号:
10470226 - 财政年份:2020
- 资助金额:
$ 16.82万 - 项目类别:
Neural algorithms underlying diversity in visual feature integration
视觉特征集成多样性背后的神经算法
- 批准号:
10842018 - 财政年份:2020
- 资助金额:
$ 16.82万 - 项目类别:














{{item.name}}会员




