Novel Learning-Based Visual Algorithms and Fusion Methods for High-Dimensional/Multi-Modality Big Data
基于学习的新型高维/多模态大数据视觉算法和融合方法
基本信息
- 批准号:RGPIN-2022-02948
- 负责人:
- 金额:$ 2.4万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
During the last 10 years we have witnessed the immense growth of machine learning (ML) and deep learning (DL) due to the collection of vast amounts of labeled data and the ever-continuing innovation of high-performance computers (HPCs). ML and DL have dramatically become an integral part of our lives and are capable of performing tasks with precision like never before. They, in conjunction with computer vision, have become the cornerstone of a multitude of applications, including customs and border protection (CBP), intelligent transportation systems (ITS), video surveillance, vision-context applications, remote sensing and geographic information systems (GIS), biomedical image analysis, bioinformatics, and information security. The performance of many algorithms in real-world applications depends largely on a strong representation of their input streams. In most cases, unimodal feature representation will be biased and inadequate for a certain learning task, while the multi-modal feature learning frameworks can overcome the aforesaid shortcomings through learning complementary clues. However, the combined feature vector of multi-model systems often lies in a high- dimensional space, posing a serious problem in the final pattern recognition. At the same time, such high-dimensional feature vectors can include redundant components and noise. Thus, it is crucial to develop novel learning-based modeling technologies and fusion methods to remove redundancy and noise and handle complex big data. This proposal focuses on designing and developing hierarchical representation learning models and fusion methods for big data analysis, e.g., multi-modal medical records, static images, time/frequency-domain signals, and dynamic video streams. Specifically, the representation learning strategies will be developed based on machine/deep learning and other relevant models, e.g., non-iterative Moore-Penrose inverse (MPI) networks comprised of random vector functional links (RVFL) and Deep Convolutional Neural Networks (DCNNs). We believe that the research outcomes of the proposed themes will have a significant impact on the academic, healthcare, research, and adjacent industries in Canada and around the world as well in the related fields. The knowledge transfer of this proposal will be carried out through the dissemination of publications in international conferences, journals, books/book chapters, and the PI's active industrial collaborations. At the same time, the HQPs involved in this project will become leaders with cutting-edge expertise in academia as well as related industries through world-class training in the areas of machine learning, computer vision, and image/biomedical image processing and analysis under an interdisciplinary setup.
在过去的10年里,我们见证了机器学习(ML)和深度学习(DL)的巨大增长,这是由于大量标记数据的收集和高性能计算机(HPC)的不断创新。ML和DL已经戏剧性地成为我们生活中不可或缺的一部分,并且能够以前所未有的精度执行任务。它们与计算机视觉一起,已成为众多应用的基石,包括海关和边境保护(CBP),智能交通系统(ITS),视频监控,视觉环境应用,遥感和地理信息系统(GIS),生物医学图像分析,生物信息学和信息安全。许多算法在实际应用中的性能很大程度上取决于其输入流的强表示。在大多数情况下,单模态特征表示对于特定的学习任务来说是有偏差和不充分的,而多模态特征学习框架可以通过学习互补线索来克服上述缺点。然而,多模型系统的组合特征向量往往位于高维空间,给最终的模式识别带来严重的问题。同时,这种高维特征向量可能包括冗余分量和噪声。因此,开发新的基于学习的建模技术和融合方法来消除冗余和噪声并处理复杂的大数据至关重要。该提案的重点是设计和开发用于大数据分析的分层表示学习模型和融合方法,例如,多模态医疗记录、静态图像、时域/频域信号和动态视频流。具体来说,表示学习策略将基于机器/深度学习和其他相关模型来开发,例如,非迭代Moore-Penrose逆(MPI)网络由随机向量函数链接(RVFL)和深度卷积神经网络(DCNN)组成。我们相信,拟议主题的研究成果将对加拿大和世界各地的学术,医疗保健,研究和邻近行业以及相关领域产生重大影响。本提案的知识转移将通过在国际会议、期刊、书籍/书籍章节中传播出版物以及PI积极的行业合作来进行。与此同时,参与该项目的HQP将通过跨学科设置下的机器学习,计算机视觉和图像/生物医学图像处理和分析领域的世界一流培训,成为学术界和相关行业的前沿专业知识的领导者。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wu, Jonathan其他文献
Supervoxel based method for multi-atlas segmentation of brain MR images
- DOI:
10.1016/j.neuroimage.2018.04.001 - 发表时间:
2018-07-15 - 期刊:
- 影响因子:5.7
- 作者:
Huo, Jie;Wu, Jonathan;Wang, Guanghui - 通讯作者:
Wang, Guanghui
Single view based pose estimation from circle or parallel lines
基于圆或平行线的基于单视图的姿态估计
- DOI:
10.1016/j.patrec.2008.01.017 - 发表时间:
2008-05 - 期刊:
- 影响因子:5.1
- 作者:
Wang, Guanghui;Wu, Jonathan;Ji, Zhengqiao - 通讯作者:
Ji, Zhengqiao
Wu, Jonathan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wu, Jonathan', 18)}}的其他基金
Unique framework for video segmentation, and categorization applicable to traffic and medical environments
适用于交通和医疗环境的视频分割和分类的独特框架
- 批准号:
RGPIN-2015-04588 - 财政年份:2021
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Unique framework for video segmentation, and categorization applicable to traffic and medical environments
适用于交通和医疗环境的视频分割和分类的独特框架
- 批准号:
RGPIN-2015-04588 - 财政年份:2020
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Automotive Sensors and Information Systems
汽车传感器和信息系统
- 批准号:
1000228049-2011 - 财政年份:2019
- 资助金额:
$ 2.4万 - 项目类别:
Canada Research Chairs
Unique framework for video segmentation, and categorization applicable to traffic and medical environments
适用于交通和医疗环境的视频分割和分类的独特框架
- 批准号:
RGPIN-2015-04588 - 财政年份:2019
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Unique framework for video segmentation, and categorization applicable to traffic and medical environments
适用于交通和医疗环境的视频分割和分类的独特框架
- 批准号:
RGPIN-2015-04588 - 财政年份:2018
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Automotive Sensors and Information Systems
汽车传感器和信息系统
- 批准号:
1000228049-2011 - 财政年份:2018
- 资助金额:
$ 2.4万 - 项目类别:
Canada Research Chairs
Unique framework for video segmentation, and categorization applicable to traffic and medical environments
适用于交通和医疗环境的视频分割和分类的独特框架
- 批准号:
RGPIN-2015-04588 - 财政年份:2017
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Automotive Sensors and Information Systems
汽车传感器和信息系统
- 批准号:
1000228049-2011 - 财政年份:2017
- 资助金额:
$ 2.4万 - 项目类别:
Canada Research Chairs
Automotive Sensors and Information Systems
汽车传感器和信息系统
- 批准号:
1000228049-2011 - 财政年份:2016
- 资助金额:
$ 2.4万 - 项目类别:
Canada Research Chairs
Unique framework for video segmentation, and categorization applicable to traffic and medical environments
适用于交通和医疗环境的视频分割和分类的独特框架
- 批准号:
RGPIN-2015-04588 - 财政年份:2016
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
- 批准号:62003314
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
- 批准号:61902016
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
- 批准号:61806040
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
- 批准号:51769027
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
- 批准号:61573081
- 批准年份:2015
- 资助金额:64.0 万元
- 项目类别:面上项目
基于有向超图的大型个性化e-learning学习过程模型的自动生成与优化
- 批准号:61572533
- 批准年份:2015
- 资助金额:66.0 万元
- 项目类别:面上项目
E-Learning中学习者情感补偿方法的研究
- 批准号:61402392
- 批准年份:2014
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
A Novel Contour-based Machine Learning Tool for Reliable Brain Tumour Resection (ContourBrain)
一种基于轮廓的新型机器学习工具,用于可靠的脑肿瘤切除(ContourBrain)
- 批准号:
EP/Y021614/1 - 财政年份:2024
- 资助金额:
$ 2.4万 - 项目类别:
Research Grant
Automating data acquisition and data processing pipeline via artificial intelligence and machine learning approaches to allow at-home use of a novel breast cancer screening method employing bra-based elastography imaging.
通过人工智能和机器学习方法自动化数据采集和数据处理流程,以便在家使用基于胸罩的弹性成像成像的新型乳腺癌筛查方法。
- 批准号:
486956 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Operating Grants
Novel Machine Learning-Based Event Reconstruction and Analysis for the Water Cherenkov Experiment
基于机器学习的新型水切伦科夫实验事件重建和分析
- 批准号:
22KF0113 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Building Health System Capacity to Develop, Validate, and Deploy Novel Machine Learning Population-Based Risk Tools to Support Population Health Management
建设卫生系统能力以开发、验证和部署新型机器学习基于人群的风险工具以支持人口健康管理
- 批准号:
484592 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Fellowship Programs
Improvement of measurement accuracy of weak measurement through novel polarimeter based on polarization interference and machine learning
基于偏振干涉和机器学习的新型旋光仪提高弱测量的测量精度
- 批准号:
23K19118 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Development of novel approaches to improve water resources data records, deep learning based forecasting, and participatory socio-hydrological systems modeling for integrated and adaptive water resources management
开发新方法来改进水资源数据记录、基于深度学习的预测以及用于综合和适应性水资源管理的参与式社会水文系统建模
- 批准号:
RGPIN-2020-05325 - 财政年份:2022
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Clinical Development and Validation of a Novel Optical Facebow based on Deep Learning
基于深度学习的新型光学面弓的临床开发和验证
- 批准号:
10036298 - 财政年份:2022
- 资助金额:
$ 2.4万 - 项目类别:
Collaborative R&D
Improving the Signal Model in Radar-based Image Reconstruction and a Novel Machine Learning Approach for Breast Microwave Imaging
改进基于雷达的图像重建中的信号模型以及乳腺微波成像的新型机器学习方法
- 批准号:
547670-2020 - 财政年份:2022
- 资助金额:
$ 2.4万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
A novel approach for landform classification based on salience detection integrating expert knowledge and deep learning
结合专家知识和深度学习的基于显着性检测的地貌分类新方法
- 批准号:
RGPIN-2022-03885 - 财政年份:2022
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Development of novel approaches to improve water resources data records, deep learning based forecasting, and participatory socio-hydrological systems modeling for integrated and adaptive water resources management
开发新方法来改进水资源数据记录、基于深度学习的预测以及用于综合和适应性水资源管理的参与式社会水文系统建模
- 批准号:
RGPIN-2020-05325 - 财政年份:2021
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual