Automated Analysis of Movement Disorders from Diffusion and Functional MRI

通过弥散和功能 MRI 自动分析运动障碍

基本信息

  • 批准号:
    1724174
  • 负责人:
  • 金额:
    $ 106万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-10-01 至 2023-09-30
  • 项目状态:
    已结题

项目摘要

Magnetic resonance imaging (MRI) is the most widely used diagnostic imaging tool for detecting neurodegenerative disorders such as Parkinson's Disease. This project will develop new automated methods for detecting subtle effects that can be revealed by MRI, including changes in water diffusional properties of human brain tissue, and functional brain activity. To assess the deviation from the normal brains, a computationally efficient algorithm will be developed to construct a population-specific brain structural template from a normal brain population. Further, a new algorithm will be developed to facilitate the detection of Parkinson's using diffusion MRI data. Finally, novel algorithms for establishing the correlation between the information derived from diffusion and functional MRI data will be developed, enabling prediction of functional activity given the anatomical information and vice-versa. Inferring such a correlation will make it possible to predict functional changes due to changes in tissue microstructure caused by neurodegenerative disorders and vice-versa.In summary, the precise project goals are: (i) To develop a computationally efficient template brain map construction algorithm for features derived from diffusion MRI. In this context, the ensemble average propagator (EAP), which captures both orientation and shape information of the diffusion process at each voxel in the diffusion MRI data, is proposed. Validation of the constructed template will be performed using standard evaluation metrics for template-based segmentation. (ii) To develop novel methods to automatically discriminate between control and Parkinson's groups using the EAP fields as well as Cauchy deformation tensors (that capture the changes in EAP fields). Validation of the classifier will be achieved using the standard leave-k-out strategy. (iii) To develop a novel algorithm for kernel-based nonlinear regression between EAP fields derived from diffusion MRI and scalar-valued fields derived from functional MRI activation maps. The algorithm will be able to predict the level of activation given the EAP fields and vice-versa. These predictions will be validated using a priori labeled data sets. Predicting functional responses from structural information and vice-versa will significantly impact treatment planning of patients with Parkinson's Disease and other neurodegenerative disorders. The multidisciplinary nature of this project will provide the opportunity to collectively train graduate students from diverse backgrounds in the STEM related fields of this project.
磁共振成像(MRI)是用于检测神经退行性疾病(如帕金森病)的最广泛使用的诊断成像工具。该项目将开发新的自动化方法,用于检测可以通过MRI揭示的细微影响,包括人脑组织水扩散特性的变化和功能性大脑活动。为了评估与正常大脑的偏差,将开发一种计算效率高的算法,以从正常大脑群体构建群体特异性大脑结构模板。此外,将开发一种新的算法,以促进使用扩散MRI数据检测帕金森氏症。最后,将开发用于建立从扩散和功能性MRI数据导出的信息之间的相关性的新算法,从而能够预测给定解剖信息的功能活动,反之亦然。推断这种相关性将使人们有可能预测由于神经退行性疾病引起的组织微观结构的变化而引起的功能变化,反之亦然。总之,确切的项目目标是:(i)开发一种计算效率高的模板脑地图构建算法,用于来自扩散MRI的特征。在这种情况下,系综平均传播算子(EAP),它捕获的扩散过程中的每个体素的扩散MRI数据的方向和形状信息,提出。将使用基于模板分割的标准评价指标对构建的模板进行验证。(ii)开发新的方法来自动区分控制和帕金森病组使用EAP领域以及柯西变形张量(捕获EAP领域的变化)。分类器的验证将使用标准的leave-k-out策略来实现。(iii)开发一种新的基于核的非线性回归算法,用于扩散MRI导出的EAP场与功能MRI激活图导出的标量场之间的回归。该算法将能够预测给定EAP字段的激活水平,反之亦然。这些预测将使用先验标记的数据集进行验证。从结构信息预测功能反应,反之亦然,将显著影响帕金森病和其他神经退行性疾病患者的治疗计划。该项目的多学科性质将提供机会,集体培训来自不同背景的研究生在该项目的STEM相关领域。

项目成果

期刊论文数量(20)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Sparse Exact PGA on Riemannian Manifolds
黎曼流形上的稀疏精确 PGA
A Higher Order Manifold-Valued Convolutional Neural Network with Applications to Diffusion MRI Processing
高阶流形值卷积神经网络及其在扩散 MRI 处理中的应用
VolterraNet: A Higher Order Convolutional Network With Group Equivariance for Homogeneous Manifolds
VolterraNet:具有同质流形群等方差的高阶卷积网络
Exploiting structural redundancy in q-space for improved EAP reconstruction from highly undersampled (k, q)-space in DMRI
  • DOI:
    10.1016/j.media.2019.02.014
  • 发表时间:
    2019-05-01
  • 期刊:
  • 影响因子:
    10.9
  • 作者:
    Sun,Jiaqi;Entezari,Alireza;Vemuri,C.
  • 通讯作者:
    Vemuri,C.
A Statistical Recurrent Model on the Manifold of Symmetric Positive Definite Matrices
对称正定矩阵流形的统计递归模型
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Baba Vemuri其他文献

Baba Vemuri的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Baba Vemuri', 18)}}的其他基金

RI: Small: Efficient Statistical Computing on Riemannian Manifolds with Applications to Medical Imaging and Computer Vision
RI:小型:黎曼流形的高效统计计算及其在医学成像和计算机视觉中的应用
  • 批准号:
    1525431
  • 财政年份:
    2015
  • 资助金额:
    $ 106万
  • 项目类别:
    Continuing Grant
Compact & Versatile Geometric Models for 3D Shape Recovery from Medical Images
袖珍的
  • 批准号:
    9811042
  • 财政年份:
    1998
  • 资助金额:
    $ 106万
  • 项目类别:
    Continuing Grant
Genetic Algorithms for Visual Reconstruction Problems
视觉重建问题的遗传算法
  • 批准号:
    9210648
  • 财政年份:
    1993
  • 资助金额:
    $ 106万
  • 项目类别:
    Continuing Grant
Research Initiation: Towards a Computational Theory for Integrating Multiple Sources of Information in Computer Vision
研究启动:建立计算机视觉中集成多种信息源的计算理论
  • 批准号:
    8810751
  • 财政年份:
    1988
  • 资助金额:
    $ 106万
  • 项目类别:
    Standard Grant
Engineering Research Equipment Grant: A Proposal for Computer Vision Research Instrumentation
工程研究设备补助金:计算机视觉研究仪器提案
  • 批准号:
    8811831
  • 财政年份:
    1988
  • 资助金额:
    $ 106万
  • 项目类别:
    Standard Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
  • 批准号:
    41601604
  • 批准年份:
    2016
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
  • 批准号:
    31100958
  • 批准年份:
    2011
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
  • 批准号:
    30470153
  • 批准年份:
    2004
  • 资助金额:
    22.0 万元
  • 项目类别:
    面上项目

相似海外基金

Movement analysis for musculoskeletal precision medicine
肌肉骨骼精准医学的运动分析
  • 批准号:
    10070944
  • 财政年份:
    2023
  • 资助金额:
    $ 106万
  • 项目类别:
    Collaborative R&D
Analysis of the impact of town compacting on the movement of local residents in their daily lives
城镇压实对当地居民日常生活流动的影响分析
  • 批准号:
    23K04168
  • 财政年份:
    2023
  • 资助金额:
    $ 106万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Movement pattern analysis of fasciculations detected by ultrasound images for the establishment of ultra-early diagnosis of amyotrophic lateral sclerosis
超声图像肌束颤动运动模式分析为肌萎缩侧索硬化症超早期诊断建立
  • 批准号:
    23K14767
  • 财政年份:
    2023
  • 资助金额:
    $ 106万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
MAGMA: Magma Accommodation and Ground Movement Analysis
MAGMA:岩浆住宿和地面运动分析
  • 批准号:
    NE/Y000110/1
  • 财政年份:
    2023
  • 资助金额:
    $ 106万
  • 项目类别:
    Research Grant
Reconsidering the historicity of Inaba's Kirin-jishi dance through the analysis of music and movement styles
通过音乐和动作风格的分析重新思考稻叶麒麟狮子舞的历史性
  • 批准号:
    23K00120
  • 财政年份:
    2023
  • 资助金额:
    $ 106万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Clumsy-seeming movement and the Environmental Turn of Choreography in Contemporary Dance : An Analysis of Choreographic Practice and the Theoretical Background
当代舞蹈中笨拙的动作与编舞的环境转向:编舞实践与理论背景分析
  • 批准号:
    22KJ2867
  • 财政年份:
    2023
  • 资助金额:
    $ 106万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Precise analysis of eye movement and development of vision training method for improving dynamic visual acuity
精准分析眼动并开发提高动态视力的视觉训练方法
  • 批准号:
    23K10668
  • 财政年份:
    2023
  • 资助金额:
    $ 106万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Infrastructure for Human Movement Analysis
人体运动分析基础设施
  • 批准号:
    RTI-2023-00080
  • 财政年份:
    2022
  • 资助金额:
    $ 106万
  • 项目类别:
    Research Tools and Instruments
Tools for the Biomechanical Analysis of Human Movement
人体运动生物力学分析工具
  • 批准号:
    RGPIN-2021-03095
  • 财政年份:
    2022
  • 资助金额:
    $ 106万
  • 项目类别:
    Discovery Grants Program - Individual
Establishment of educational methods using visual perception patterns~Trajectory analysis of eye movement in learning evaluation~
利用视觉感知模式建立教育方法~学习评价中眼动轨迹分析~
  • 批准号:
    22K09975
  • 财政年份:
    2022
  • 资助金额:
    $ 106万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了