Reactive Scattering Codes for Massively Parallel Architecture Supercomputers

大规模并行架构超级计算机的反应散射码

基本信息

项目摘要

It has recently become possible to solve quantum reactive scattering problems within their full three-dimensional context for three-atom systems with modest numbers of energetically-open initial-and-final quantum states. While a high level of accuracy has been achieved for a few simple systems, there remain major impediments to the extension of these methods to the vast majority of interesting chemical reactions. The basic theoretical and computational issues are easily characterized on a qualitative level. First, the complexity and computational intensity of current methods even for simple three-atom systems challenge current generations of high-performance computers. Second, as one moves beyond these simple chemical reactions, the complexity of the calculations increases tremendously because the number of open initial-and-final quantum states increases by orders of magnitude. For this reason such problems are currently beyond the realm of consideration for even the most optimistic of researchers. This research will focus on developments that will provide steps towards solving such problems on massively parallel computers.
最近,对于具有适度能量开放的初始和最终量子态的三原子系统,在完整的三维环境中解决量子反应散射问题已经成为可能。虽然在一些简单的系统中已经达到了很高的准确度,但将这些方法扩展到绝大多数有趣的化学反应中仍然存在主要障碍。基本的理论和计算问题很容易定性表征。首先,即使是简单的三原子系统,当前方法的复杂性和计算强度也对当前几代高性能计算机构成了挑战。其次,当我们超越这些简单的化学反应时,计算的复杂性会大大增加,因为开放的初始和最终量子态的数量会以数量级增加。由于这个原因,即使是最乐观的研究人员目前也无法考虑这些问题。这项研究将侧重于在大规模并行计算机上解决这些问题的进展。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Edward Hayes其他文献

Characterization of murine monoclonal antibodies to Escherichia coli J5
抗大肠杆菌 J5 的鼠单克隆抗体的表征
  • DOI:
  • 发表时间:
    1986
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    K. M. Miner;C. Manyak;Elaine Williams;J. Jackson;Marvin Jewell;M. Gammon;Cindy Ehrenfreund;Edward Hayes;L. Callahan;Hans;Zweerink;N. Sigal
  • 通讯作者:
    N. Sigal

Edward Hayes的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Edward Hayes', 18)}}的其他基金

Scalable Computational Algorthims for Accurate Quantum Scattering Studies of Four and Five-Atom Systems (Postdoc)
用于四原子和五原子系统精确量子散射研究的可扩展计算算法(博士后)
  • 批准号:
    9504071
  • 财政年份:
    1995
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Vibrational Eigenstate Codes for Massively Parallel Architecture Supercomputers
大规模并行架构超级计算机的振动本征态代码
  • 批准号:
    9405161
  • 财政年份:
    1994
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似国自然基金

Lagrangian origin of geometric approaches to scattering amplitudes
  • 批准号:
    24ZR1450600
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
微波有源Scattering dark state粒子的理论及应用研究
  • 批准号:
    61701437
  • 批准年份:
    2017
  • 资助金额:
    28.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

In-situ X-ray Scattering Studies of Oxide Epitaxial Growth Kinetics and Dynamics
氧化物外延生长动力学和动力学的原位 X 射线散射研究
  • 批准号:
    2336506
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Unveiling magnetic structure of long-range ordered quasicrystals and approximant crystals via X-ray Resonant Magnetic Scattering method
通过X射线共振磁散射法揭示长程有序准晶和近似晶体的磁结构
  • 批准号:
    24K17016
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Spectroscopic Detection of Magnetic Scattering and Quasiparticles at Atomic Resolution in the Electron Microscope
电子显微镜中原子分辨率的磁散射和准粒子的光谱检测
  • 批准号:
    EP/Z531194/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
CAREER: Neural Computational Imaging - A Path Towards Seeing Through Scattering
职业:神经计算成像——透视散射的途径
  • 批准号:
    2339616
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAREER: Unravelling the Strong Interaction with High-Energy Nuclear Scattering
职业生涯:揭示高能核散射的强相互作用
  • 批准号:
    2239274
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Development of a new EBSD analysis method combining dynamical scattering theory and machine learning
结合动态散射理论和机器学习开发新的 EBSD 分析方法
  • 批准号:
    23H01276
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
A Study on the correlation bewteen the hierarchical structure of foods and texture by synchrotron X-ray scattering method
同步辐射X射线散射法研究食品层次结构与质地的相关性
  • 批准号:
    23K05124
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Elucidation of surface proton hopping conduction mechanism using neutron quasi-elastic scattering measurements
使用中子准弹性散射测量阐明表面质子跳跃传导机制
  • 批准号:
    23K17937
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Understanding the Influences of Microphysical Interactions with Pollution and Water on Dust Scattering Properties and Radiative Effects
了解污染物和水的微物理相互作用对粉尘散射特性和辐射效应的影响
  • 批准号:
    2232138
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Simultaneous Wide and Small Angle Operando Neutron Total Scattering to Probe Electrolyte Ordering in Supercapacitors
同时进行广角和小角操作中子全散射来探测超级电容器中的电解质排序
  • 批准号:
    2879388
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了