CAREER: Neural Computational Imaging - A Path Towards Seeing Through Scattering
职业:神经计算成像——透视散射的途径
基本信息
- 批准号:2339616
- 负责人:
- 金额:$ 64.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-05-01 至 2029-04-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Imaging through scattering is arguably the most important open problem in applied optics. If one could overcome scattering and other optical aberrations, one could (a) see through tissue to observe "biology in action" at cellular scale; (b) see through fog, smoke, and inclement weather to safely navigate in adverse conditions; (c) see through the atmosphere to allow ground-based telescopes to outperform James Webb for a fraction of the cost; and (d) see through thin fiber bundles to enable minimally invasive endoscopy. The physics of scattering is now relatively well-understood and the obstacles to effectively image through scattering are primarily computational in nature: Existing algorithms cannot efficiently disentangle measurements of scattered photons to recover the underlying structure of a time-varying three-dimensional scene hidden behind a scattering medium. This project develops a collection of signal processing and machine learning innovations to broadly address this challenge. This project also develops a portable imaging-through-scattering demonstrator that will be used to engage high-school and undergraduate students in STEM. It also supports the development of a new hands-on cross-disciplinary undergraduate computational-imaging course that will improve US workforce development.The overarching goal of this project is to develop a "neural computational imaging" framework capable of solving challenging, high-dimensional, non-stationary computational-imaging problems. The framework consists of three key innovations: First, functional neural signal representations will be used to capture and exploit a signal's low-dimensional structure and temporal regularity without explicit models. Second, neural forward operators will provide an interpretable, computationally efficient, and easy-to-calibrate approach to model non-stationary imaging inverse problems. Finally, self-supervised learning will be used to extract data-driven priors in imaging applications where ground-truth images/signals are not available. Collectively, these innovations are expected to provide breakthrough imaging-through-scattering capabilities for use in national defense, remote sensing, robotics, astronomy, microscopy, endoscopy, pathology, and other applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
通过散射成像可以说是应用光学中最重要的开放问题。如果人们能够克服散射和其他光学畸变,人们就可以(a)透过组织观察细胞尺度的“生物活动”;(B)透过雾、烟和恶劣天气观察,在不利条件下安全导航;(c)透过大气层观察,使地面望远镜的性能优于詹姆斯·韦伯(James WebB),而成本却只有后者的一小部分;和(d)透视细纤维束以实现最小侵入性内窥镜检查。散射的物理学现在相对较好地理解,通过散射有效成像的障碍主要是计算性的:现有算法不能有效地解开散射光子的测量,以恢复隐藏在散射介质后面的时变三维场景的底层结构。该项目开发了一系列信号处理和机器学习创新,以广泛应对这一挑战。该项目还开发了一种便携式散射成像演示器,将用于吸引高中和本科生参与STEM。它还支持开发一个新的动手跨学科的本科计算成像课程,这将改善美国劳动力的发展。该项目的总体目标是开发一个“神经计算成像”框架,能够解决具有挑战性的,高维的,非稳态的计算成像问题。该框架包括三个关键的创新:第一,功能神经信号表示将用于捕获和利用信号的低维结构和时间规律性,而无需显式模型。其次,神经前向算子将提供一种可解释的,计算效率高,易于校准的方法来模拟非平稳成像逆问题。最后,自我监督学习将用于在无法获得地面实况图像/信号的成像应用中提取数据驱动的先验。总的来说,这些创新有望为国防、遥感、机器人、天文学、显微镜、内窥镜检查、病理学和其他应用提供突破性的散射成像能力。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christopher Metzler其他文献
AONeuS: A Neural Rendering Framework for Acoustic-Optical Sensor Fusion
AONeuS:声光传感器融合的神经渲染框架
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Mohamad Qadri;Kevin Zhang;Akshay Hinduja;Michael Kaess;A. Pediredla;Christopher Metzler - 通讯作者:
Christopher Metzler
Christopher Metzler的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Neural Process模型的多样化高保真技术研究
- 批准号:62306326
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Computational and neural signatures of interoceptive learning in anorexia nervosa
神经性厌食症内感受学习的计算和神经特征
- 批准号:
10824044 - 财政年份:2024
- 资助金额:
$ 64.95万 - 项目类别:
A Neural and Computational Framework of the Effort Paradox
努力悖论的神经和计算框架
- 批准号:
EP/Y014561/1 - 财政年份:2024
- 资助金额:
$ 64.95万 - 项目类别:
Research Grant
CRCNS US-German Collaborative Research Proposal: Neural and computational mechanisms of flexible goal-directed decision making
CRCNS 美德合作研究提案:灵活目标导向决策的神经和计算机制
- 批准号:
2309022 - 财政年份:2024
- 资助金额:
$ 64.95万 - 项目类别:
Standard Grant
Collaborative Research: The computational and neural basis of statistical learning during musical enculturation
合作研究:音乐文化过程中统计学习的计算和神经基础
- 批准号:
2242084 - 财政年份:2023
- 资助金额:
$ 64.95万 - 项目类别:
Standard Grant
Developing an Experimental and Computational Framework for Studying Neural Representations of Tactile Motion on the Hand
开发用于研究手部触觉运动神经表征的实验和计算框架
- 批准号:
10732095 - 财政年份:2023
- 资助金额:
$ 64.95万 - 项目类别:
Anatomical, neural, and computational constraints on sensory cross-modal plasticity following early blindness
早期失明后感觉跨模态可塑性的解剖学、神经学和计算限制
- 批准号:
10570400 - 财政年份:2023
- 资助金额:
$ 64.95万 - 项目类别:
Neural and computational mechanisms underlying robust object recognition
鲁棒物体识别背后的神经和计算机制
- 批准号:
10682285 - 财政年份:2023
- 资助金额:
$ 64.95万 - 项目类别:
Collaborative Research: The computational and neural basis of statistical learning during musical enculturation
合作研究:音乐文化过程中统计学习的计算和神经基础
- 批准号:
2242085 - 财政年份:2023
- 资助金额:
$ 64.95万 - 项目类别:
Standard Grant
Collaborative Research: Neural computational rules of robust and generalizable learning
协作研究:鲁棒性和泛化学习的神经计算规则
- 批准号:
2323240 - 财政年份:2023
- 资助金额:
$ 64.95万 - 项目类别:
Standard Grant
Training in theoretical and computational approaches to neural circuits of cognition
认知神经回路的理论和计算方法培训
- 批准号:
10626364 - 财政年份:2023
- 资助金额:
$ 64.95万 - 项目类别: