Parallel Algorithms for Large Scale Optimal Control Programs
大规模最优控制程序的并行算法
基本信息
- 批准号:9211109
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1992
- 资助国家:美国
- 起止时间:1992-07-01 至 1994-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Currently, there is no parallel algorithm that can solve optimal control problems efficiently on computers with a large number of processors. This research will develop two parallel algorithms to solve large scale optimal control problems that are expected to be efficient with a large number of processors. The first algorithm, called the Hybrid algorithm, is a combination of the Differential Dynamic Programming (DDP) and a stagewise Newton's method, both of which are serial. The Hybrid parallel algorithm is designed primarily for unconstrained optimal control problems. The second algorithm, called an SQP-type algorithm, is derived by utilizing special features of the optimal control problem along with a Sequential Quadratic Programming (SQP) approach. The SQP-type algorithm is suitable for both the unconstrained and constrained optimal control problem. In both algorithms, each processor is assigned to solve an optimization problem over a group of time periods. Codes will be developed for machines with medium-grain parallel capabilities e.g., the Intel iPSC/860 and Kendall Square computers. A typical engineering application involving a nonlinear flexible structural problem with 10,000 time periods will be used to evaluate the proposed algorithms.
目前,还没有一种并行算法可以在拥有大量处理器的计算机上高效地解决最优控制问题。这项研究将开发两种并行算法来解决大规模最优控制问题,这些问题预计在大量处理器的情况下是有效的。第一种算法,称为混合算法,是微分动态规划(DDP)和分阶段牛顿方法的组合,这两种方法都是串联的。混合并行算法主要用于无约束最优控制问题。第二种算法称为SQP型算法,它是利用最优控制问题的特点和序列二次规划(SQP)方法导出的。SQP型算法既适用于无约束最优控制问题,也适用于约束最优控制问题。在这两种算法中,每个处理器都被指派在一组时间段内解决一个优化问题。代码将被开发用于具有中粒度并行能力的机器,例如Intel iPSC/860和Kendall Square计算机。一个典型的工程应用涉及10,000个时间周期的非线性柔性结构问题,将被用来评估所提出的算法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christine Shoemaker其他文献
Christine Shoemaker的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christine Shoemaker', 18)}}的其他基金
AF: Small: Parallel Global Optimization Algorithms with Asynchrony, Adaptive Re-Planning, and Response Surfaces for Costly Simulations
AF:小型:具有异步、自适应重新规划和响应面的并行全局优化算法,用于昂贵的模拟
- 批准号:
1116298 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Standard Grant
Environmental Sustainability Systems Analysis Including Multiple Objective and Fixed Cost Optimization of Management Decisions with Watershed and Groundwater Applications
环境可持续性系统分析,包括流域和地下水应用的管理决策的多目标和固定成本优化
- 批准号:
0756575 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Continuing Grant
Investigating Contaminant Transport in Large Watersheds with New Methods for Automatic Calibration, Sensitivity and Uncertainty Analysis Including Application to Design of Sensor
利用自动校准、灵敏度和不确定性分析(包括应用于传感器设计)的新方法研究大流域的污染物迁移
- 批准号:
0711491 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Continuing Grant
Improving Calibration, Sensitivity and Uncertainty Analysis of Data Based Models of the Environment
改进基于数据的环境模型的校准、灵敏度和不确定性分析
- 批准号:
0229176 - 财政年份:2003
- 资助金额:
-- - 项目类别:
Continuing grant
ALGORITHMS: Multi-Algorithm Parallel Optimization of Costly Functions
算法:高代价函数的多算法并行优化
- 批准号:
0305583 - 财政年份:2003
- 资助金额:
-- - 项目类别:
Continuing Grant
Continuous State Dynamic Programming Algorithms for Supercomputers
超级计算机的连续状态动态规划算法
- 批准号:
8915326 - 财政年份:1990
- 资助金额:
-- - 项目类别:
Continuing grant
Advanced Scientific Computer Support for Research in Agriculture
先进的科学计算机支持农业研究
- 批准号:
8612771 - 财政年份:1987
- 资助金额:
-- - 项目类别:
Standard Grant
Research Inititation-Optimal Ecological Pest Control Inclu- Ding Applications to Corn Production
研究启动——最佳生态害虫防治,包括在玉米生产中的应用
- 批准号:
7410407 - 财政年份:1974
- 资助金额:
-- - 项目类别:
Standard Grant
相似海外基金
Space-time parallel algorithms for large scale simulation and optimization problems governed by partial differential equations
用于偏微分方程控制的大规模模拟和优化问题的时空并行算法
- 批准号:
RGPIN-2021-02595 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Space-time parallel algorithms for large scale simulation and optimization problems governed by partial differential equations
用于偏微分方程控制的大规模模拟和优化问题的时空并行算法
- 批准号:
RGPIN-2021-02595 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
CIF: Collaborative Research: Parallel Online Algorithms for Large-Scale MRI
CIF:协作研究:大规模 MRI 的并行在线算法
- 批准号:
1514403 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Standard Grant
Research on parallel algorithms for large scale Bayesian network structure search
大规模贝叶斯网络结构搜索并行算法研究
- 批准号:
15K20965 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Young Scientists (B)
CIF: Collaborative Research: Parallel Online Algorithms for Large-Scale MRI
CIF:协作研究:大规模 MRI 的并行在线算法
- 批准号:
1514056 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Standard Grant
CIF: Small: Collaborative Research: Parallel Online Algorithms for Large-Scale MRI
CIF:小型:协作研究:大规模 MRI 的并行在线算法
- 批准号:
1632599 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Efficient High-Order Parallel Algorithms for Large-Scale Photonics Simulation
协作研究:大规模光子学仿真的高效高阶并行算法
- 批准号:
1418918 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Continuing Grant
Collaborative Research: Efficient High-Order Parallel Algorithms for Large-Scale Photonics Simulation
协作研究:大规模光子学仿真的高效高阶并行算法
- 批准号:
1418961 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Continuing Grant
CPA-ACR: Parallel Algorithms and Software for Large Scale Microarry Data Analysis and Gene Network Inference
CPA-ACR:大规模微阵列数据分析和基因网络推理的并行算法和软件
- 批准号:
0811804 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Continuing Grant
Design Optimization using Large-Scaled Parallel Evolutionary Algorithms with Gene Analysis
使用大规模并行进化算法和基因分析进行设计优化
- 批准号:
18700219 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Young Scientists (B)