CIF: Collaborative Research: Parallel Online Algorithms for Large-Scale MRI
CIF:协作研究:大规模 MRI 的并行在线算法
基本信息
- 批准号:1514056
- 负责人:
- 金额:$ 16.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This effort puts forth powerful models capturing the characteristics of big dynamic magnetic resonance imaging (MRI) data, and then offering architectures and algorithms, while revealing fundamental insights into various analytical and implementation trade-offs involved. The proposed framework will extract salient global trends to enable imputation for missing MRI data entries due to imaging speed limitations, and obtain parsimonious representations to process and draw inferences from big pools of MRI data. Leveraging advances in low-rank and sparsity-aware signal processing, learning and optimization, online, parallel, and decentralized algorithms based on matrix and tensor models, will enable streaming analytics of sequential measurements using parallel processors, and tracking dynamically evolving datasets. This project will directly impact high-resolution 3D dynamic MRI technology to improve medical diagnosis and treatment. The developed algorithms and tools will enable technology transfer to benefit a wide population and improve healthcare. Insights gained from this project's large-scale analytics context will also benefit big data mining, neuroscience, smart grid, and health informatics. Broader impact will be further effected by the integration of the proposed research with an educational plan designed to train the new cadre of next-generation of medical data science professionals, as well as promote cross-fertilization of academic research with health industry needs.
这项工作提出了强大的模型,捕捉大动态磁共振成像(MRI)数据的特征,然后提供架构和算法,同时揭示了对所涉及的各种分析和实现权衡的基本见解。拟议的框架将提取显著的全球趋势,以填补由于成像速度限制而缺失的MRI数据条目,并获得简约的表示,以处理和从大量MRI数据中得出推论。 利用低秩和稀疏感知信号处理、学习和优化、基于矩阵和张量模型的在线、并行和分散算法的进步,将实现使用并行处理器对顺序测量的流式分析,并跟踪动态演变的数据集。该项目将直接影响高分辨率3D动态MRI技术,以改善医疗诊断和治疗。开发的算法和工具将使技术转让能够使广大人群受益并改善医疗保健。从该项目的大规模分析背景中获得的见解也将有利于大数据挖掘,神经科学,智能电网和健康信息学。更广泛的影响将通过将拟议的研究与旨在培养下一代医疗数据科学专业人员的新干部的教育计划相结合来进一步实现,并促进学术研究与健康行业需求的相互促进。
项目成果
期刊论文数量(23)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Topology Identification and Learning Over Graphs: Accounting for Nonlinearities and Dynamics
- DOI:10.1109/jproc.2018.2804318
- 发表时间:2018-05-01
- 期刊:
- 影响因子:20.6
- 作者:Giannakis, Georgios B.;Shen, Yanning;Karanikolas, Georgios Vasileios
- 通讯作者:Karanikolas, Georgios Vasileios
Reinforcement Learning for 5G Caching with Dynamic Cost
- DOI:10.1109/icassp.2018.8462673
- 发表时间:2018-04
- 期刊:
- 影响因子:0
- 作者:A. Sadeghi;Fatemeh Sheikholeslami;A. Marques;G. Giannakis
- 通讯作者:A. Sadeghi;Fatemeh Sheikholeslami;A. Marques;G. Giannakis
Active sampling for graph-aware classification
- DOI:10.1109/globalsip.2017.8309039
- 发表时间:2017-11
- 期刊:
- 影响因子:0
- 作者:Dimitris Berberidis;G. Giannakis
- 通讯作者:Dimitris Berberidis;G. Giannakis
Multi-kernel Change Detection for Dynamic Functional Connectivity Graphs
动态功能连接图的多内核变化检测
- DOI:
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:Karanikolas, G. V.;Sporns, O.;Giannakis, G. B.
- 通讯作者:Giannakis, G. B.
Soft unveiling of communities via egonet tensors
- DOI:10.1109/acssc.2017.8335494
- 发表时间:2017-10
- 期刊:
- 影响因子:0
- 作者:Fatemeh Sheikholeslami;G. Giannakis
- 通讯作者:Fatemeh Sheikholeslami;G. Giannakis
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Georgios Giannakis其他文献
Georgios Giannakis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Georgios Giannakis', 18)}}的其他基金
Collaborative Research: ECCS-CCSS Core: Resonant-Beam based Optical-Wireless Communication
合作研究:ECCS-CCSS核心:基于谐振光束的光无线通信
- 批准号:
2332173 - 财政年份:2024
- 资助金额:
$ 16.49万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Medium: Robust Learning over Graphs
协作研究:CIF:媒介:图上的鲁棒学习
- 批准号:
2312547 - 财政年份:2023
- 资助金额:
$ 16.49万 - 项目类别:
Continuing Grant
IMR: MM-1C: Learning-driven Models for 5G Internet Measurements
IMR:MM-1C:5G 互联网测量的学习驱动模型
- 批准号:
2220292 - 财政年份:2022
- 资助金额:
$ 16.49万 - 项目类别:
Standard Grant
Collaborative Research: SWIFT: Cognitive-IoV with Simultaneous Sensing and Communications via Dynamic RF Front End
合作研究:SWIFT:通过动态射频前端实现同步传感和通信的认知车联网
- 批准号:
2128593 - 财政年份:2021
- 资助金额:
$ 16.49万 - 项目类别:
Standard Grant
CCSS: Online Learning for IoT Monitoring and Management
CCSS:物联网监控和管理在线学习
- 批准号:
2126052 - 财政年份:2021
- 资助金额:
$ 16.49万 - 项目类别:
Standard Grant
Hybrid mmWave mMIMO Transceiver Design for Doubly-Selective Channels
适用于双选通道的混合毫米波 mMIMO 收发器设计
- 批准号:
2102312 - 财政年份:2020
- 资助金额:
$ 16.49万 - 项目类别:
Standard Grant
CPS: Medium: Collaborative Research: Collective Intelligence for Proactive Autonomous Driving (CI-PAD)
CPS:中:协作研究:主动自动驾驶集体智慧 (CI-PAD)
- 批准号:
2103256 - 财政年份:2020
- 资助金额:
$ 16.49万 - 项目类别:
Standard Grant
CIF: Medium: Adaptive Diffusions for Scalable and Robust Learning over Graphs
CIF:中:用于图上可扩展和鲁棒学习的自适应扩散
- 批准号:
1901134 - 财政年份:2019
- 资助金额:
$ 16.49万 - 项目类别:
Standard Grant
CCSS: Collaborative Research: Learn-and-Adapt to Manage Dynamic Cyber-Physical Networks
CCSS:协作研究:学习和适应管理动态信息物理网络
- 批准号:
1711471 - 财政年份:2017
- 资助金额:
$ 16.49万 - 项目类别:
Standard Grant
CCSS: Collaborative Research: Smart-Grid Powered Green Communications in Heterogeneous Networks
CCSS:协作研究:异构网络中智能电网驱动的绿色通信
- 批准号:
1508993 - 财政年份:2015
- 资助金额:
$ 16.49万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: CIF: Medium: Snapshot Computational Imaging with Metaoptics
合作研究:CIF:Medium:Metaoptics 快照计算成像
- 批准号:
2403122 - 财政年份:2024
- 资助金额:
$ 16.49万 - 项目类别:
Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
- 批准号:
2402815 - 财政年份:2024
- 资助金额:
$ 16.49万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
- 批准号:
2343599 - 财政年份:2024
- 资助金额:
$ 16.49万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
- 批准号:
2343600 - 财政年份:2024
- 资助金额:
$ 16.49万 - 项目类别:
Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
- 批准号:
2402817 - 财政年份:2024
- 资助金额:
$ 16.49万 - 项目类别:
Standard Grant
Collaborative Research: NSF-AoF: CIF: Small: AI-assisted Waveform and Beamforming Design for Integrated Sensing and Communication
合作研究:NSF-AoF:CIF:小型:用于集成传感和通信的人工智能辅助波形和波束成形设计
- 批准号:
2326622 - 财政年份:2024
- 资助金额:
$ 16.49万 - 项目类别:
Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
- 批准号:
2402816 - 财政年份:2024
- 资助金额:
$ 16.49万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Medium: Snapshot Computational Imaging with Metaoptics
合作研究:CIF:Medium:Metaoptics 快照计算成像
- 批准号:
2403123 - 财政年份:2024
- 资助金额:
$ 16.49万 - 项目类别:
Standard Grant
Collaborative Research: NSF-AoF: CIF: Small: AI-assisted Waveform and Beamforming Design for Integrated Sensing and Communication
合作研究:NSF-AoF:CIF:小型:用于集成传感和通信的人工智能辅助波形和波束成形设计
- 批准号:
2326621 - 财政年份:2024
- 资助金额:
$ 16.49万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Versatile Data Synchronization: Novel Codes and Algorithms for Practical Applications
合作研究:CIF:小型:多功能数据同步:实际应用的新颖代码和算法
- 批准号:
2312872 - 财政年份:2023
- 资助金额:
$ 16.49万 - 项目类别:
Standard Grant














{{item.name}}会员




