Collaborative Research: Efficient High-Order Parallel Algorithms for Large-Scale Photonics Simulation
协作研究:大规模光子学仿真的高效高阶并行算法
基本信息
- 批准号:1418961
- 负责人:
- 金额:$ 21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-08-15 至 2018-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The focus of this research project is to develop efficient, accurate, and scalable computational techniques and provide much-needed simulation design tools for the photonics industry. More and more of modern life is based on fast and cheap communication. The transmission of information by electrical circuitry is limited in latency by power concerns and in bandwidth by cost. Photonic circuits virtually eliminate these constraints and provide a way to make high-bandwidth, low-latency interconnects that are, in many applications, far superior to their electric counterparts. But photonic circuits are extremely challenging to design. Indeed, the current state-of-art integrated photonic circuits chip contains only hundreds of photonic components due to the lack of efficient and reliable tools for the design of integrated photonic circuits. The difficulty here is that the design of integrated photonic devices requires accurate simulation of propagating electromagnetic waves which, in turn, requires extremely large numbers of unknowns even for modest accuracy in a volume discretization. The tools developed by this project will address these important challenges.The fundamental mathematical model for most photonics applications consists of Maxwell's equations with complex, structured material coefficients under wide variation of feature length scales. At computational scales feasible for a design engineer, existing techniques are too inaccurate for the design of complex photonic devices. This inaccuracy/inefficiency trade-off severely limits the usefulness of simulation in a design feedback loop. It further represents an impediment to the rapid development of the photonics industry since design iteration through manufacturing is typically very expensive and can take months of turn-around time on a single design. Lifting this inefficiency constraint is challenging, and it has the potential to play a pivotal role in the development of ambitious photonic circuits and devices. The investigators propose to develop the following techniques to overcome the obstacles encountered in practical, large-scale photonics simulation. (1) Modularization of photonic device simulation via boundary integral equation methods. Specifically, the so-called mode calculation will be converted to a nonlinear eigenvalue problem of boundary integral equations, and the so-called propagation problem will be converted to a standard scattering problem and then solved via boundary integral equation methods. (2) Extension of the QBX method ("Quadrature by Expansion"), a general-purpose, high order quadrature scheme to treat three-dimensional problems with domains having corners, edges and multi-scale structures for accurate photonics simulation. (3) Seamless combination of the QBX method with a novel variant of the Fast Multipole Method (FMM) to solve integral equations in a matrix-free form with near optimal operation and storage requirements.
该研究项目的重点是开发高效,准确和可扩展的计算技术,并为光子学行业提供急需的仿真设计工具。越来越多的现代生活是基于快速和廉价的通信。通过电路的信息传输在延迟方面受到功率问题的限制,在带宽方面受到成本的限制。光子电路实际上消除了这些限制,并提供了一种制造高带宽、低延迟互连的方法,在许多应用中,这种互连远远上级电互连。但光子电路的设计极具挑战性。实际上,由于缺乏用于设计集成光子电路的有效且可靠的工具,当前最先进的集成光子电路芯片仅包含数百个光子组件。这里的困难在于,集成光子器件的设计需要对传播的电磁波进行精确模拟,这反过来又需要极大量的未知数,即使对于体积离散化中的适度精度也是如此。 该项目开发的工具将解决这些重要的挑战。大多数光子学应用的基本数学模型由麦克斯韦方程组组成,该方程组具有复杂的结构材料系数,特征长度尺度变化很大。在设计工程师可行的计算规模上,现有技术对于复杂光子器件的设计太不准确。这种不准确/低效率的权衡严重限制了设计反馈回路中仿真的有用性。它还代表了光子产业快速发展的障碍,因为通过制造的设计迭代通常非常昂贵,并且单个设计可能需要数月的周转时间。解除这种低效率的限制是具有挑战性的,它有可能在雄心勃勃的光子电路和设备的开发中发挥关键作用。研究人员建议开发以下技术,以克服在实际的大规模光子学模拟中遇到的障碍。 (1)利用边界积分方程法模拟光子器件的模块化。具体而言,所谓的模式计算将被转换为边界积分方程的非线性本征值问题,而所谓的传播问题将被转换为标准散射问题,然后通过边界积分方程方法求解。(2)QBX方法的扩展(“扩展求积”),一种通用的高阶求积方案,用于处理具有角、边和多尺度结构的域的三维问题,以进行精确的光子学模拟。(3)QBX方法与快速多极子方法(FMM)的新变体无缝结合,以无矩阵形式求解积分方程,具有接近最佳的运算和存储要求。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Optimization of fast algorithms for global Quadrature by Expansion using target-specific expansions
- DOI:10.1016/j.jcp.2019.108976
- 发表时间:2018-11
- 期刊:
- 影响因子:0
- 作者:Matt Wala;A. Klöckner
- 通讯作者:Matt Wala;A. Klöckner
Simulation of Multiscale Hydrophobic Lipid Dynamics via Efficient Integral Equation Methods
通过高效积分方程方法模拟多尺度疏水脂质动力学
- DOI:10.1137/18m1219503
- 发表时间:2020
- 期刊:
- 影响因子:1.6
- 作者:Fu, Szu-Pei P.;Ryham, Rolf;Klöckner, Andreas;Wala, Matt;Jiang, Shidong;Young, Yuan-Nan
- 通讯作者:Young, Yuan-Nan
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andreas Kloeckner其他文献
Andreas Kloeckner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andreas Kloeckner', 18)}}的其他基金
SHF: Small: Collaborative Research: Transform-to-Perform: Languages, Algorithms, and Solvers for Nonlocal Operators
SHF:小型:协作研究:从转换到执行:非本地算子的语言、算法和求解器
- 批准号:
1911019 - 财政年份:2019
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Elements: Transformation-Based High-Performance Computing in Dynamic Languages
要素:动态语言中基于转换的高性能计算
- 批准号:
1931577 - 财政年份:2019
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
CAREER: Towards General-Purpose, High-Order Integral Equation Methods for Computer Simulation in Engineering: Analysis, Algorithm Design, and Applications
职业:面向工程计算机仿真的通用高阶积分方程方法:分析、算法设计和应用
- 批准号:
1654756 - 财政年份:2017
- 资助金额:
$ 21万 - 项目类别:
Continuing Grant
Small: Collaborative Research: Transform-to-Perform: Languages, Algorithms, and Code Transformations for High-Performance FEM
小:协作研究:从转换到执行:高性能 FEM 的语言、算法和代码转换
- 批准号:
1524433 - 财政年份:2015
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334970 - 财政年份:2024
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
- 批准号:
2412357 - 财政年份:2024
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Collaborative Research: Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
合作研究:用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
- 批准号:
2343606 - 财政年份:2024
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334969 - 财政年份:2024
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Collaborative Research: Integrated Materials-Manufacturing-Controls Framework for Efficient and Resilient Manufacturing Systems
协作研究:高效、弹性制造系统的集成材料制造控制框架
- 批准号:
2346650 - 财政年份:2024
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Collaborative Research: Integrated Materials-Manufacturing-Controls Framework for Efficient and Resilient Manufacturing Systems
协作研究:高效、弹性制造系统的集成材料制造控制框架
- 批准号:
2346651 - 财政年份:2024
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Collaborative Research: FET: Medium:Compact and Energy-Efficient Compute-in-Memory Accelerator for Deep Learning Leveraging Ferroelectric Vertical NAND Memory
合作研究:FET:中型:紧凑且节能的内存计算加速器,用于利用铁电垂直 NAND 内存进行深度学习
- 批准号:
2312886 - 财政年份:2023
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Collaborative Research: FET: Medium:Compact and Energy-Efficient Compute-in-Memory Accelerator for Deep Learning Leveraging Ferroelectric Vertical NAND Memory
合作研究:FET:中型:紧凑且节能的内存计算加速器,用于利用铁电垂直 NAND 内存进行深度学习
- 批准号:
2312884 - 财政年份:2023
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Collaborative Research: FET: Medium: Efficient Compilation for Dynamically Reconfigurable Atom Arrays
合作研究:FET:中:动态可重构原子阵列的高效编译
- 批准号:
2313084 - 财政年份:2023
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Collaborative Research: Accurate and Structure-Preserving Numerical Schemes for Variable Temperature Phase Field Models and Efficient Solvers
合作研究:用于变温相场模型和高效求解器的精确且结构保持的数值方案
- 批准号:
2309547 - 财政年份:2023
- 资助金额:
$ 21万 - 项目类别:
Standard Grant