Quantum Field Theory: Two-Dimensional Integrable Systems, Exact S-Matrices, and Nonlocal Field Theories
量子场论:二维可积系统、精确 S 矩阵和非局部场论
基本信息
- 批准号:9222318
- 负责人:
- 金额:$ 20.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1993
- 资助国家:美国
- 起止时间:1993-03-15 至 1997-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The research, in the general area of theoretical elementary particle physics, will concentrate on aspects of two-dimensional quantum field theory which are important in the solution of mathematical problems that arise in the understanding of superstring theory and statistical systems. (Super)string theory, which is believed to provide the basic understanding of the fundamental forces of nature, has as its underlying mathematical and quantum-mechanical description the formalism and methods of two-dimensional quantum field theory. The same formalism and methods are used in the study of certain one- and two-dimensional statistical mechanics models which describe the behavior of diverse systems such as long- chain molecules and membranes, and may explain certain phenomena such as high temperature superconductivity. In both cases it has become apparent that much progress can be made in those situations where one is dealing with "integrable" systems, because in such situations a complete solution of the corresponding mathematical problems can be obtained. It is believe that the relevant integrable systems can be described in two complementary, but equivalent, manners, either as so- called Liouville and Toda theories, or as nonlocal induced gravity and W-gravity theories. The research will focus on the study of such theories and is expected to provide important information concerning strings and the explanation of the fundamental forces of nature, as well as information about statistical systems which arise in many practical applications.
在理论基本粒子物理的一般领域,研究将集中在二维量子场论的各个方面,这对于解决在理解超弦理论和统计系统时出现的数学问题很重要。(超)弦理论被认为提供了对自然界基本力的基本理解,它的基础数学和量子力学描述是二维量子场论的形式主义和方法。同样的形式和方法被用于研究某些一维和二维统计力学模型,这些模型描述了不同系统的行为,如长链分子和膜,并可以解释某些现象,如高温超导。在这两种情况下,很明显,在处理“可积”系统的情况下,可以取得很大的进展,因为在这种情况下,可以获得相应数学问题的完全解。相信相关的可积系统可以用两种互补但等效的方式来描述,即所谓的Liouville和Toda理论,或非局部诱导引力和w -引力理论。这项研究将集中在这些理论的研究上,预计将提供关于弦的重要信息和对自然基本力的解释,以及在许多实际应用中出现的统计系统的信息。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Marcus Grisaru其他文献
Marcus Grisaru的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Marcus Grisaru', 18)}}的其他基金
Supersymmetry, Supergravity, and Strings
超对称性、超引力和弦
- 批准号:
0070475 - 财政年份:2000
- 资助金额:
$ 20.13万 - 项目类别:
Continuing Grant
Quantum Field Theory: Supersymmetry and Supergravity in Two and Four Dimensions
量子场论:二维和四维的超对称性和超引力
- 批准号:
9604587 - 财政年份:1997
- 资助金额:
$ 20.13万 - 项目类别:
Continuing Grant
Supersymmetry and Strings in Particle Physics
粒子物理学中的超对称性和弦
- 批准号:
8818853 - 财政年份:1989
- 资助金额:
$ 20.13万 - 项目类别:
Continuing Grant
Theoretical Research in Quantum Gravity and Particle Physics
量子引力与粒子物理理论研究
- 批准号:
8313243 - 财政年份:1983
- 资助金额:
$ 20.13万 - 项目类别:
Continuing Grant
Theoretical Research in Quantum Gravity and Particle Physics
量子引力与粒子物理理论研究
- 批准号:
7920801 - 财政年份:1979
- 资助金额:
$ 20.13万 - 项目类别:
Continuing Grant
Theoretical Research in Quantum Gravity and Particle Physics
量子引力与粒子物理理论研究
- 批准号:
7807757 - 财政年份:1978
- 资助金额:
$ 20.13万 - 项目类别:
Standard Grant
Theoretical Research in Quantum Gravity and Particle Physics
量子引力与粒子物理理论研究
- 批准号:
7602054 - 财政年份:1976
- 资助金额:
$ 20.13万 - 项目类别:
Standard Grant
相似国自然基金
Graphon mean field games with partial observation and application to failure detection in distributed systems
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
新型Field-SEA多尺度溶剂模型的开发与应用研究
- 批准号:21506066
- 批准年份:2015
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Non-perturbative Conformal Field Theory in Quantum Gravity and the Laboratory (Exact CFT)
量子引力中的非微扰共形场论和实验室(精确 CFT)
- 批准号:
EP/Z000106/1 - 财政年份:2024
- 资助金额:
$ 20.13万 - 项目类别:
Research Grant
Conference: Arithmetic quantum field theory
会议:算术量子场论
- 批准号:
2400553 - 财政年份:2024
- 资助金额:
$ 20.13万 - 项目类别:
Standard Grant
Twistors and Quantum Field Theory: Strong fields, holography and beyond
扭量和量子场论:强场、全息术及其他
- 批准号:
EP/Z000157/1 - 财政年份:2024
- 资助金额:
$ 20.13万 - 项目类别:
Research Grant
CAREER: Elliptic cohomology and quantum field theory
职业:椭圆上同调和量子场论
- 批准号:
2340239 - 财政年份:2024
- 资助金额:
$ 20.13万 - 项目类别:
Continuing Grant
Quiver Gauge Theory, String Theory and Quantum Field Theory.
箭袋规范理论、弦理论和量子场论。
- 批准号:
2890913 - 财政年份:2023
- 资助金额:
$ 20.13万 - 项目类别:
Studentship
Applications of algebraic topology to quantum field theory
代数拓扑在量子场论中的应用
- 批准号:
2882485 - 财政年份:2023
- 资助金额:
$ 20.13万 - 项目类别:
Studentship
M-Theory, Cosmology and Quantum Field Theory
M 理论、宇宙学和量子场论
- 批准号:
ST/X000575/1 - 财政年份:2023
- 资助金额:
$ 20.13万 - 项目类别:
Research Grant
Research in Novel Symmetries of Quantum Field Theory and String Theory
量子场论和弦理论的新对称性研究
- 批准号:
2310279 - 财政年份:2023
- 资助金额:
$ 20.13万 - 项目类别:
Continuing Grant
Modular Cocycles, Explicit Class Field Theory, and Quantum Designs
模块化共循环、显式类场论和量子设计
- 批准号:
2302514 - 财政年份:2023
- 资助金额:
$ 20.13万 - 项目类别:
Continuing Grant
Particle Physics - Theory, Quantum Field Theory
粒子物理-理论、量子场论
- 批准号:
2855977 - 财政年份:2023
- 资助金额:
$ 20.13万 - 项目类别:
Studentship














{{item.name}}会员




