Zero and Finite Temperature Critical Phenomena in Quantum Systems
量子系统中的零温度和有限温度临界现象
基本信息
- 批准号:9303855
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing grant
- 财政年份:1993
- 资助国家:美国
- 起止时间:1993-07-01 至 1997-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project explores the properties of matter at low temperatures. Advantage is taken of the well-established properties of He-4 at low temperatures to illuminate a number of problems in condensed maatter physics. One sub-project addresses the influence of controlled defects on the critical phenomena of a pure system. The introduction of a low density structural impurity into liquid helium can produce a striking alteration in the critical pehnomena. An understanding of this problem will enhance our understanding of the role of defects for a wider range of phase transitions. A second area is the study of boson localization in He-4 films adsorbed on a heterogeneous substrate. The study of the physics of a boson system, such a a helium film in the random potential of aheterogeneous substrate, offers an interesting complement to studies of the metal-insulator transition and the superconductor- insulator transition in dirty superconductors. A third topic will be the study of a dissipative flow of superfluid helium through a porous medium. This is a boson analog to the technologically important problem of the vortex liquid and flux-flow regimes of high Tc superconductors. %%% This project explores the properties of matter at very low temperatures--below minus 450 degrees Fahrenheit. The project deals with a superfluid, helium, which exhibits behavior which, by analogy, can be related to phenomena in other materials, particularly high Tc superconductors. In addition, the research deals with phase transitions and provides fundamental information bearing on solid-liquid melting (and other transformations) that occurs in all materials.
这个项目探索物质在低温下的性质。利用He-4在低温下的良好性质,阐明了凝聚态数学物理中的一些问题。一个子项目解决了受控缺陷对纯系统的临界现象的影响。在液氦中引入低密度结构杂质可以引起临界现象的显著变化。对这一问题的理解将增强我们对缺陷在更大范围的相变中的作用的理解。第二个领域是研究吸附在非均质衬底上的He-4薄膜中的玻色子局域化。玻色子系统的物理研究是对脏超导体中金属-绝缘体相变和超导体-绝缘体相变的有趣补充。第三个主题是研究超流氦在多孔介质中的耗散流动。这是一个与高T_c超导体的涡旋液体和磁通流态的重要技术问题类似的玻色子。这个项目探索物质在极低温度下的性质--低于零下450华氏度。该项目涉及一种超流体氦,通过类比,它的行为可以与其他材料中的现象有关,特别是高T_c超导体。此外,这项研究还涉及相变,并提供了与所有材料中发生的固-液熔化(和其他转变)有关的基本信息。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Reppy其他文献
John Reppy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Reppy', 18)}}的其他基金
Collaborative Research: SHF: Medium: Environment-Centric Analysis and Optimization for Higher-Order Languages
合作研究:SHF:中:高阶语言的以环境为中心的分析和优化
- 批准号:
2212538 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Continuing Grant
SHF: Small: High-Level Programming Models for GPUs
SHF:小型:GPU 高级编程模型
- 批准号:
1718540 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Standard Grant
SHF: Medium: A DSL for Data Visualization and Analysis in Imaging-Based Science and Scientific Computing
SHF:Medium:用于基于成像的科学和科学计算中的数据可视化和分析的 DSL
- 批准号:
1564298 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Continuing Grant
EAGER: Exploring the Foundations of High-Level Programming Models for GPUs
EAGER:探索 GPU 高级编程模型的基础
- 批准号:
1446412 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Standard Grant
Studies of Supersolid Phenomena in Solid Helium
固体氦中超固体现象的研究
- 批准号:
0965698 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Standard Grant
Studies of Supersolid Phenomena in Helium and Hydrogen
氦和氢中超固体现象的研究
- 批准号:
0605864 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Continuing grant
Superfluid Studies in Quantum Systems at Low Temperatures
低温量子系统中的超流体研究
- 批准号:
0203244 - 财政年份:2002
- 资助金额:
-- - 项目类别:
Continuing grant
Quantum Fluids at Low Temperatures: 2D and Dilute Bose Gas Studies
低温量子流体:二维和稀玻色气体研究
- 批准号:
9971124 - 财政年份:1999
- 资助金额:
-- - 项目类别:
Continuing grant
Superfluid Dynamics and Critical Phenomena
超流体动力学和临界现象
- 批准号:
9623694 - 财政年份:1996
- 资助金额:
-- - 项目类别:
Continuing grant
相似国自然基金
Finite-time Lyapunov 函数和耦合系统的稳定性分析
- 批准号:11701533
- 批准年份:2017
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Electronic properties of organic semiconductor crystals at finite temperature from first-principles
从第一原理研究有机半导体晶体在有限温度下的电子特性
- 批准号:
23K04667 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Theoretical development and computational implementation of Finite Temperature FAM method for study
有限温度 FAM 研究方法的理论发展和计算实现
- 批准号:
2895616 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
Finite Temperature Simulation of Non-Markovian Quantum Dynamics in Condensed Phase using Quantum Computers
使用量子计算机对凝聚相非马尔可夫量子动力学进行有限温度模拟
- 批准号:
2320328 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Characterizing Finite-Temperature Topology Via Quantum Computation
通过量子计算表征有限温度拓扑
- 批准号:
2310656 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Connecting Parton Cascade to QCDS Shear Viscosity for a Dynamical Model of Finite Temperature Kinetic Theory
将 Parton Cascade 连接到 QCDS 剪切粘度以建立有限温度动力学理论的动态模型
- 批准号:
2310021 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Study of finite-temperature phase transition of QCD by gradient flow
梯度流QCD有限温度相变研究
- 批准号:
22K03593 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Non-perturbative dynamics and compositeness at finite temperature
有限温度下的非微扰动力学和复合性
- 批准号:
2763883 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Studentship
Finite-Temperature Modelling of One, Two, and Many Dopants in the 2D Fermi-Hubbard Model
二维 Fermi-Hubbard 模型中一种、两种和多种掺杂剂的有限温度建模
- 批准号:
567963-2022 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Postgraduate Scholarships - Doctoral
First-principles calculations of finite temperature transport properties
有限温度传输特性的第一性原理计算
- 批准号:
22K14285 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: Finite Temperature Electronic Structure Methods for Predicting Material Phase Diagrams
职业:预测材料相图的有限温度电子结构方法
- 批准号:
2046744 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant