Near-Optimal Solutions for Combinatorial Problems: Algorithms and Complexity
组合问题的近乎最优解:算法和复杂性
基本信息
- 批准号:9307391
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing grant
- 财政年份:1994
- 资助国家:美国
- 起止时间:1994-04-01 至 1998-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The study of approximation algorithms for combinatorial optimization problems dates back to the 1960's, and in spite of significant attention paid to this area, there has not been much progress until the past few years. Recently, there have been a number of important breakthroughs that have introduced new techniques, both in the design and analysis of approximation algorithms, and more significantly, in techniques for providing evidence that problems do not have efficient algorithms that guarantee near-optimal solutions for particular performance guarantees. The problems studied include: (a) the vertex cover problem; (b) the maximum acyclic subgraph problem; (c) the minimum-cost satisfiability problem; (d) the Steiner tree problem; (e) the traveling salesman problem; (f) the bin-packing problem; (g) the graph partitioning problem; and (h) several scheduling problems. In the search for improved approximation algorithms for these problems, the primary focus is on methods that rely on the use of linear programming as a tool both in the design and the analysis of the algorithm. Also these new techniques for proving nonapproximability results are applied in a variety of settings; in particular: (1) proving lower bounds on the absolute error of approximation algorithms (as opposed to the relative error); and (2) strengthening lower bounds (where traditional methods were able to prove lower bounds that did not match the performance of the best known approximation algorithms).
组合优化问题的逼近算法的研究可以追溯到上世纪60年代的S,尽管这一领域引起了人们的极大关注,但直到最近几年才有了很大的进展。最近,在近似算法的设计和分析方面,以及更重要的是,在提供证据表明问题不具有保证特定性能保证的近最优解的有效算法的技术方面,已经有了一些重要的突破。所研究的问题包括:(A)顶点覆盖问题;(B)最大非循环子图问题;(C)最小代价可满足性问题;(D)Steiner树问题;(E)旅行商问题;(F)装箱问题;(G)图划分问题;(H)几个调度问题。在为这些问题寻找改进的近似算法时,主要关注的是在算法的设计和分析中依赖于使用线性规划作为工具的方法。此外,这些用于证明不可逼近结果的新技术被应用于各种设置;尤其是:(1)证明近似算法的绝对误差的下界(相对于相对误差);以及(2)加强下界(其中传统方法能够证明与最著名的近似算法的性能不匹配的下界)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Shmoys其他文献
David Shmoys的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Shmoys', 18)}}的其他基金
Stochastic Optimization Models and Methods for the Sharing Economy
共享经济的随机优化模型和方法
- 批准号:
1537394 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Standard Grant
AF: Small: Approximation Algorithms for Problems in Logistics
AF:小:物流问题的近似算法
- 批准号:
1526067 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Standard Grant
IEEE Symposium on Foundations of Computer Science (FOCS) 2013, Berkeley, CA Oct 27-29, 2013
IEEE 计算机科学基础研讨会 (FOCS) 2013,加利福尼亚州伯克利,2013 年 10 月 27-29 日
- 批准号:
1348020 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Standard Grant
AF: Small: AAdvances in the Design of Approximation Algorithms for Optimization Problems
AF:小:优化问题近似算法设计的进展
- 批准号:
1017688 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Standard Grant
Approximation algorithms for discrete stochastic and deterministic optimization problems
离散随机和确定性优化问题的近似算法
- 批准号:
0635121 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Continuing Grant
Approximation Algorithms for Scheduling, Packing, and Related Logistics Problems
调度、包装和相关物流问题的近似算法
- 批准号:
0430682 - 财政年份:2004
- 资助金额:
-- - 项目类别:
Continuing grant
The Design, Analysis and Application of Approximation Algorithms
逼近算法的设计、分析与应用
- 批准号:
9912422 - 财政年份:2000
- 资助金额:
-- - 项目类别:
Standard Grant
U.S.-Canada Joint Workshop on Approximation Algorithms for NP-Hard Problems, Toronto, Canada, Sept. 26 - Oct. 1, 1999
美国-加拿大 NP 难问题近似算法联合研讨会,加拿大多伦多,1999 年 9 月 26 日至 10 月 1 日
- 批准号:
9904068 - 财政年份:1999
- 资助金额:
-- - 项目类别:
Standard Grant
Approximation Algorithms via Linear Programming
通过线性规划的近似算法
- 批准号:
9700029 - 财政年份:1997
- 资助金额:
-- - 项目类别:
Standard Grant
PYI: The Design and Analysis of Efficient Algorithms
PYI:高效算法的设计与分析
- 批准号:
8996272 - 财政年份:1989
- 资助金额:
-- - 项目类别:
Continuing Grant
相似海外基金
A Study on Exact Optimal Solutions for Subgroup Identification Based on Discrete Structure Processing
基于离散结构处理的子群辨识精确最优解研究
- 批准号:
23K11023 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
revAIsor: Revise AI Solutions for Optimal Results
revAIsor:修改人工智能解决方案以获得最佳结果
- 批准号:
10075158 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant for R&D
Topics in Vortex Dynamics: Extreme Events, Optimal Closures and New Equilibrium Solutions
涡动力学主题:极端事件、最优闭合和新的平衡解
- 批准号:
RGPIN-2020-05710 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Improved Numerical Methods for Solving Optimal Control Problems with Nonsmooth and Singular Solutions
解决具有非光滑和奇异解的最优控制问题的改进数值方法
- 批准号:
2031213 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant
Topics in Vortex Dynamics: Extreme Events, Optimal Closures and New Equilibrium Solutions
涡动力学主题:极端事件、最优闭合和新的平衡解
- 批准号:
RGPIN-2020-05710 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Topics in Vortex Dynamics: Extreme Events, Optimal Closures and New Equilibrium Solutions
涡动力学主题:极端事件、最优闭合和新的平衡解
- 批准号:
RGPIN-2020-05710 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Multi optimal Solutions for Energy Storage Systems
储能系统多最优解
- 批准号:
104426 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Collaborative R&D
Study on sustainable and optimal solutions of ecosystem services provided by Sekampung watershed, Indonesia
印度尼西亚Sekampung流域提供的生态系统服务可持续和最优解决方案研究
- 批准号:
17H01915 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Optimal and robust combination of energy storage systems for massive integration of renewable energy - a focus on hydropower/hydrostorage solutions
用于大规模整合可再生能源的储能系统的最佳和稳健组合 - 专注于水电/水力存储解决方案
- 批准号:
351135640 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Research Grants
Optimal Operation of Irrigation Schemes Based on Viscosity Solutions of Partial Differential Equations
基于偏微分方程粘度解的灌溉方案优化运行
- 批准号:
16KT0018 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)